
RMT Working Group B. Adamson/NRL
INTERNET-DRAFT C. Bormann/Tellique
draft-ietf-rmt-pi-norm-09 M. Handley/ACIRI
Expires: May 2004 J. Macker/NRL

November 2003

NACK-Oriented Reliable Multicast Protocol (NORM)

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note
that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other doc-
uments at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in
progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

This document describes the messages and procedures of the Negative-acknowledgement (NACK) Oriented Reliable Multicast
(NORM) protocol. This protocol is designed to provide end-to-end reliable transport of bulk data objects or streams over generic
IP multicast routing and forwarding services. NORM uses a selective, negative acknowledgement mechanism for transport relia-
bility and offers additional protocol mechanisms to allow for operation with minimal "a priori" coordination among senders and
receivers. A congestion control scheme is specified to allow the NORM protocol fairly share available network bandwidth with
other transport protocols such as Transmission Control Protocol (TCP). It is capable of operating with both reciprocal multicast
routing among senders and receivers and with asymmetric connectivity (possibly a unicast return path) between the senders and
receivers. The protocol offers a number of features to allow different types of applications or possibly other higher level trans-
port protocols to utilize its service in different ways. The protocol leverages the use of FEC-based repair and other IETF reliable
multicast transport (RMT) building blocks in its design.

1.0 Introduction and Applicability

The Negative-acknowledgement (NACK) Oriented Reliable Multicast (NORM) protocol is designed to provide reliable transport
of data from one or more sender(s) to a group of receivers over an IP multicast network. The primary design goals of NORM are
to provide efficient, scalable, and robust bulk data (e.g., computer files, transmission of persistent data) transfer across possibly
heterogeneous IP networks and topologies. The NORM protocol design provides support for distributed multicast session partic-
ipation with minimal coordination among senders and receivers. NORM allows senders and receivers to dynamically join and
leave multicast sessions at will with minimal overhead for control information and timing synchronization among participants.
To accommodate this capability, NORM protocol message headers contain some common information allowing receivers to eas-
ily synchronize to senders throughout the lifetime of a reliable multicast session. NORM is designed to be self-adapting to a
wide range of dynamic network conditions with little or no pre-configuration. The protocol is purposely designed to be tolerant

Adamson, Bormann, et al. Expires May 2004 [Page 1]

Internet Draft NORM Protocol November 2003

of inaccurate timing estimations or lossy conditions that may occur in many networks including mobile and wireless. The proto-
col is also designed to exhibit convergence and efficient operation even in situations of heavy packet loss and large queueing or
transmission delays.

This document is a product of the IETF RMT WG and follows the guidelines provided in RFC 3269 [1]. The key words
"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [2].

1.1 NORM Delivery Service Model

A NORM protocol instance (NormSession) is defined within the context of participants communicating connectionless (e.g.,
Internet Protocol (IP) or User Datagram Protocol (UDP)) packets over a network using pre-determined addresses and host port
numbers. Generally, the participants exchange packets using an IP multicast group address, but unicast transport may also be
established or applied as an adjunct to multicast delivery. In the case of multicast, the participating NormNodes will communi-
cate using a common IP multicast group address and port number that has been chosen via means outside the context of the given
NormSession. Other IETF data format and protocol standards exist that may be applied to describe and convey the required "a
priori" information for a specific NormSession (e.g., Session Description Protocol (SDP) [5], Session Announcement Protocol
(SAP) [6], etc).

The NORM protocol design is principally driven by the assumption of a single sender transmitting bulk data content to a group
of receivers. However, the protocol MAY operate with multiple senders within the context of a single NormSession. In initial
implementations of this protocol, it is anticipated that multiple senders will transmit independent of one another and receivers
will maintain state as necessary for each sender. Howev er, in future versions of NORM, it is possible that some aspects of proto-
col operation (e.g., round-trip time collection) may provide for alternate modes allowing more efficient performance for applica-
tions requiring multiple senders.

NORM provides for three types of bulk data content objects (NormObjects) to be reliably transported. These types include:

1) static computer memory data content (NORM_OBJECT_DATA type),

2) computer storage files (NORM_OBJECT_FILE type), and

3) non-finite streams of continuous data content (NORM_OBJECT_STREAM type).

The distinction between NORM_OBJECT_DATA and NORM_OBJECT_FILE is simply to provide a "hint" to receivers in Norm-
Sessions serving multiple types of content as to what type of storage should be allocated for received content (i.e. memory or file
storage). Other than that distinction, the two are identical, providing for reliable transport of finite (but potentially very large)
units of content. These static data and file services are anticipated to be useful for multicast-based cache applications with the
ability to reliably provide transmission of large quantities of static data. Other types of static data/file delivery services might
make use of these transport object types, too. The use of the NORM_OBJECT_STREAM type is at the application’s discretion and
could be used to carry static data or file content also. The NORM reliable stream service opens up additional possibilities such
as serialized reliable messaging or other unbounded, perhaps dynamically produced content. The NORM_OBJECT_STREAM
provides for reliable transport analogous to that of the Transmission Control Protocol (TCP), although NORM receivers will be
able to begin receiving stream content at any point in time. The applicability of this feature will depend upon the application.

The NORM protocol also allows for a small amount of "out-of-band" data (sent as NORM_INFO messages) to be attached to the
data content objects transmitted by the sender. This readily-available "out-of-band" data allows multicast receivers to quickly
and efficiently determine the nature of the corresponding data, file, or stream bulk content being transmitted. This allows appli-
cation-level control of the receiver node’s participation in the current transport activity. This also allows the protocol to be flexi-
ble with minimal pre-coordination among senders and receivers. The NORM_INFO content is designed to be atomic in that its
size MUST fit into the payload portion of a single NORM message.

NORM does _not_ provide for global or application-level identification of data content within in its message headers. Note the

Adamson, Bormann, et al. Expires May 2004 [Page 2]

Internet Draft NORM Protocol November 2003

NORM_INFO out-of-band data mechanism could be leveraged by the application for this purpose if desired, or identification
could alternatively be embedded within the data content. NORM does identify transmitted content (NormObjects) with transport
identifiers that are applicable only while the sender is transmitting and/or repairing the given object. These transport data content
identifiers (NormTransportIds) are assigned in a monotonically increasing fashion by each NORM sender during the course of a
NormSession. Each sender maintains its NormTransportId assignments independently so that individual NormObjects may be
uniquely identified during transport with the concatenation of the sender session-unique identifier (NormNodeId) and the
assigned NormTransportId. The NormTransportIds are assigned from a large, but fixed, numeric space in increasing order and
may be reassigned during long-lived sessions. The NORM protocol provides mechanisms so that the sender application may ter-
minate transmission of data content and inform the group of this in an efficient manner. Other similar protocol control mecha-
nisms (e.g., session termination, receiver synchronization, etc) are specified so that reliable multicast application variants may
construct different, complete bulk transfer communication models to meet their goals.

To summarize, the NORM protocol provides reliable transport of different types of data content (including potentially mixed
types). The senders enqueue and transmit bulk content in the form of static data or files and/or non-finite, ongoing stream types.
NORM senders provide for repair transmission of data and/or FEC content in response to NACK messages received from the
receiver group. Mechanisms for "out-of-band" information and other transport control mechanisms are specified for use by
applications to form complete reliable multicast solutions for different purposes.

1.2 NORM Scalability

Group communication scalability requirements lead to adaptation of negative acknowledgement (NACK) based protocol schemes
when feedback for reliability is required [7]. NORM is a protocol centered around the use of selective NACKs to request repairs
of missing data. NORM provides for the use of packet-level forward error correction (FEC) techniques for efficient multicast
repair and optional proactive transmission robustness[8]. FEC-based repair can be used to greatly reduce the quantity of reliable
multicast repair requests and repair transmissions[9] in a NACK-oriented protocol. The principal factor in NORM scalability is
the volume of feedback traffic generated by the receiver set to facilitate reliability and congestion control. NORM uses proba-
bilistic suppression of redundant feedback based on exponentially distributed random backoff timers. The performance of this
type of suppression relative to other techniques is described in [10]. NORM dynamically measures the group’s roundtrip timing
status to set its suppression and other protocol timers. This allows NORM to scale well while maintaining reliable data delivery
transport with low latency relative to the network topology over which it is operating.

Feedback messages can be either multicast to the group at large or sent via unicast routing to the sender. In the case of unicast
feedback, the sender "advertises" the feedback state to the group to facilitate feedback suppression. In typical Internet environ-
ments, it is expected that the NORM protocol will readily scale to group sizes on the order of tens of thousands of receivers. A
study of the quantity of feedback for this type of protocol is described in [11]. NORM is able to operate with a smaller amount
of feedback than a single TCP connection, even with relatively large numbers of receivers. Thus, depending upon the network
topology, it is possible that NORM may scale to larger group sizes. With respect to computer resource usage, the NORM proto-
col does _not_ require that state be kept on all receivers in the group. NORM senders maintain state only for receivers providing
explicit congestion control feedback. NORM receivers must maintain state for for each active sender. This may constrain the
number of simultaneous senders in some uses of NORM.

1.3 NORM Environmental Requirements and Considerations

All of the environmental requirements and considerations that apply to the RMT FEC Building Block and the the RMT TCP-
Friendly Multicast Congestion Control (TFMCC) Building Block [17] also apply to NORM.

The NORM protocol SHALL be capable of operating in an end-to-end fashion with no assistance from intermediate systems
beyond basic IP multicast group management, routing, and forwarding services. While the techniques utilized in NORM are
principally applicable to "flat" end-to-end IP multicast multicast topologies, they could also be applied in the sub-levels of hierar-
chical (e.g., tree-based) multicast distribution if so desired. NORM can make use of reciprocal (among senders and receivers)
multicast communication under the Any-Source Multicast (ASM) model defined in RFC 1112 [12], but SHALL also be capable
of scalable operation in asymmetric topologies such as Source Specific Multicast (SSM) [13] where there may only be unicast

Adamson, Bormann, et al. Expires May 2004 [Page 3]

Internet Draft NORM Protocol November 2003

routing service from the receivers to the sender(s).

NORM is compatible with IPv4 and IPv6. Additionally, NORM may be used with networks employing Network Address Trans-
lation (NAT) providing the NAT device supports IP multicast and/or can cache UDP traffic source port numbers for remapping
feedback traffic from receivers to the sender(s).

2.0 NORM Architecture Definition

A NormSession is comprised of participants (NormNodes) acting as senders and/or receivers. NORM senders transmit data con-
tent in the form of NormObjects to the session destination address and the NORM receivers attempt to reliably receive the trans-
mitted content using negative acknowledgments to request repair. Each NormNode within a NormSession is assumed to have a
preselected unique 32-bit identifier (NormNodeId). NormNodes MUST have uniquely assigned identifiers within a single Norm-
Session to distinquish between possible multiple senders and to distinguish feedback information from different receivers. There
are two reserved NormNodeId values. A value of 0x00000000 is considered an invalid NormNodeId value and a value of
0xffffffff is a "wildcard" NormNodeId. While the protocol does not preclude multiple sender nodes concurrently transmit-
ting within the context of a single NORM session (i.e. many- to-many operation), any type of interactive coordination among
NORM senders is assumed to be controlled by the application or higher protocol layer. There are some optional mechanisms
specified in this document that can be leveraged for such application layer coordination.

As previously noted, NORM allows for reliable transmission of three different basic types of data content. The first type is
NORM_OBJECT_DATA, which is used for static, persistent blocks of data content maintained in the sender’s application memory
storage. The second type is NORM_OBJECT_FILE, which corresponds to data stored in the sender’s non-volatile file system.
The NORM_OBJECT_DATA and NORM_OBJECT_FILE types both represent "NormObjects" of finite but potentially very large
size. The third type of data content is NORM_OBJECT_STREAM, which corresponds to an ongoing transmission of undefined
length. This is analogous to the reliable stream service provide by TCP for unicast data transport. The format of the stream con-
tent is application-defined and may be byte or message oriented. The NORM protocol provides for "flushing" of the stream to
expedite delivery or possibly enforce application message boundaries. NORM protocol implementations may offer either (or
both) in-order delivery of the stream data to the receive application or out-of-order (more immediate) delivery of received seg-
ments of the stream to the receiver application. In either case, NORM sender and receiver implementations provide buffering to
facilitate repair of the stream as it is transported.

All NormObjects are logically segmented into FEC coding blocks and symbols for transmission by the sender. In NORM, an
FEC encoding symbol directly corresponds to the payload of NORM_DATA messages or "segment". Note that when systematic
FEC codes are used, the payload of NORM_DATA messages sent for the first portion of a FEC encoding block are source symbols
(actual segments of original user data), while the remaining symbols for the block consist of parity symbols generated by FEC
encoding. These parity symbols are generally sent in reponse to repair requests, but some number may be sent proactively at the
end each encoding block to increase the robustness of transmission. When non-systematic FEC codes are used, all symbols sent
consist of FEC encoding parity content. In this case, the receiver must receive a sufficient number of symbols to reconstruct (via
FEC decoding) the original user data for the given block. In this document, the terms "symbol" and "segment" are used inter-
changeably.

Transmitted NormObjects are temporarily yet uniquely identified within the NormSession context using the given sender’s
NormNodeId, NormInstanceId, and a temporary NormObjectTransportId. Depending upon the implementation, individual
NORM senders may manage their NormInstanceIds independently, or a common NormInstanceId may be agreed upon for all
participating nodes within a session if needed as a session identifier. NORM NormObjectTransportId data content identifiers are
sender-assigned and applicable and valid only during a NormObject’s actual _transport_ (i.e. for as long as the sender is transmit-
ting and providing repair of the indicated NormObject). For a long-lived session, the NormObjectTransportId field can wrap and
previously-used identifiers may be re-used. Note that globally unique identification of transported data content is not provided
by NORM and, if required, must be managed by the NORM application. The individual segments or symbols of the NormObject
are further identified with FEC payload identifiers which include coding block and symbol identifiers. These are discussed in
detail later in this document.

Adamson, Bormann, et al. Expires May 2004 [Page 4]

Internet Draft NORM Protocol November 2003

2.1 NORM Protocol Operation Overview

A NORM sender primarily generates messages of type NORM_DATA. These messages carry original data segments or FEC sym-
bols and repair segments/symbols for the bulk data/file or stream NormObjects being transferred. By default, redundant FEC
symbols are sent only in response to receiver repair requests (NACKs) and thus normally little or no additional transmission
overhead is imposed due to FEC encoding. However, the NORM implementation MAY be optionally configured to proactively
transmit some amount of redundant FEC symbols along with the original content to potentially enhance performance (e.g.,
improved delay) at the cost of additional transmission overhead. This option may be sensible for certain network conditions and
can allow for robust, asymmetric multicast (e.g., unidirectional routing, satellite, cable) [18] with reduced receiver feedback, or,
in some cases, no feedback.

A sender message of type NORM_INFO is also defined and is used to carry OPTIONAL "out-of-band" context information for a
given transport object. A single NORM_INFO message can be associated with a NormObject. Because of its atomic nature,
missing NORM_INFO messages can be NACKed and repaired with a slightly lower delay process than NORM’s general FEC-
encoded data content. NORM_INFO may serve special purposes for some bulk transfer, reliable multicast applications where
receivers join the group mid-stream and need to ascertain contextual information on the current content being transmitted. The
NACK process for NORM_INFO will be described later. When the NORM_INFO message type is used, its transmission should
precede transmisson of any NORM_DATA message for the associated NormObject.

The sender also generates messages of type NORM_CMD to assist in certain protocol operations such as congestion control, end-
of-transmission flushing, round trip time estimation, receiver synchronization, and optional positive acknowledgement requests
or application defined commands. The transmission of NORM_CMD messages from the sender is accomplished by one of three
different procedures. These procedures are: single, best effort unreliable transmission of the command; repeated redundant trans-
missions of the command; and positively-acknowledged commands. The transmission technique used for a given command
depends upon the function of the command. Several core commands are defined for basic protocol operation. Additionally,
implementations MAY wish to consider providing the OPTIONAL application-defined commands that can take advantage of the
transmission methodologies available for commands. This allows for application-level session management mechanisms that can
make use of information available to the underlying NORM protocol engine (e.g., round-trip timing, transmission rate, etc).

NORM receivers generate messages of type NORM_NACK or NORM_ACK in response to transmissions of data and commands
from a sender. The NORM_NACK messages are generated to request repair of detected data transmission losses. Receivers gener-
ally detect losses by tracking the sequence of transmission from a sender. Sequencing information is embedded in the transmit-
ted data packets and end-of-transmission commands from the sender. NORM_ACK messages are generated in response to certain
commands transmitted by the sender. In the general (and most scalable) protocol mode, NORM_ACK messages are sent only in
response to congestion control commands from the sender. The feedback volume of these congestion control NORM_ACK mes-
sages is controlled using the same timer-based probabilistic suppression techniques as for NORM_NACK messages to avoid feed-
back implosion. In order to meet potential application requirements for positive acknowledgement from receivers, other
NORM_ACK messages are defined and available for use. All sender and receiver transmissions are subject to rate control gov-
erned by a peak transmission rate set for each participant by the application. This can be used to limit the quantity of multicast
data transmitted by the group. When NORM’s congestion control algorithm is enabled the rate for senders is automatically
adjusted. In some networks, it may be desirable to establish minimum and maximum bounds for the rate adjustment depending
upon the application even when dynamic congestion control is enabled. However, in the case of the general Internet, congestion
control policy SHALL be observed which is compatible with coexistent TCP flows.

2.2 NORM Protocol Building Blocks

The operation of the NORM protocol is based upon the concepts presented in the Nack-Oriented Reliable Multicast (NORM)
Building Block document[14]. This includes the basic NORM architecture and the data transmission, repair, and feedback strate-
gies discussed in that document. NORM also makes use of Forward Error Correction encoding techiques for repair messaging
and optional transmission robustness as described in [15]. NORM uses the FEC Payload ID as specified by the FEC Building
Block Document[16]. Additionally, for congestion control, this document includes a baseline congestion control mechanism
(NORM-CC) based on the TCP-Friendly Multicast Congestion Control (TFMCC) Building Block described in [17].

Adamson, Bormann, et al. Expires May 2004 [Page 5]

Internet Draft NORM Protocol November 2003

2.3 NORM Design Tradeoffs

While the various features of NORM are designed to provide some measure of general purpose utility, it is important to empha-
size the understanding that "no one size fits all" in the reliable multicast transport arena. There are numerous engineering trade-
offs involved in reliable multicast transport design and this requires an increased awareness of application and network architec-
ture considerations. Performance requirements affecting design can include: group size, heterogeneity (e.g., capacity and/or
delay), asymmetric delivery, data ordering, delivery delay, group dynamics, mobility, congestion control, and transport across
low capacity connections. NORM contains various parameters to accommodate many of these differing requirements. The
NORM protocol and its mechanisms MAY be applied in multicast applications outside of bulk data transfer, but there is an
assumed model of bulk transfer transport service that drives the trade-offs that determine the scalability and performance
described in this document.

The ability of NORM to provide reliable data delivery is also governed by any buffer constraints of the sender and receiver appli-
cations. NORM protocol implementations SHOULD be designed to operate with the greatest efficiency and robustness possible
within application-defined buffer constraints. Buffer requirements for reliability, as always, are a function of the delay-band-
width product of the network topology. NORM performs best when allowed more buffering resources than typical point-to-point
transport protocols. This is because NORM feedback suppression is based upon randomly-delayed transmissions from the
receiver set, rather than immediately transmitted feedback. There are definitive tradeoffs between buffer utilization, group size
scalability, and efficiency of performance. Large buffer sizes allow the NORM protocol to perform most efficiently in large
delay-bandwidth topologies and allow for longer feedback suppression backoff timeouts. This yields improved group size scala-
bility. NORM can operate with reduced buffering but at a cost of decreased efficiency (lower relative goodput) and reduced
group size scalability.

3.0 Conformance Statement

This Protocol Instantiation document, in conjunction with the Building Block documents identified in [14], [15], [16], and [17]
completely specifies a working reliable multicast transport protocol that conforms to the requirements described in RFC 2357
[3].

Adamson, Bormann, et al. Expires May 2004 [Page 6]

Internet Draft NORM Protocol November 2003

This document specifies the following message types and mechanisms which are REQUIRED in complying NORM protocol
implementations:

Message Type Purpose

NORM_DATA Sender message for application data transmission. Implementations must sup-
port at least one of the NORM_OBJECT_DATA, NORM_OBJECT_FILE, or
NORM_OBJECT_STREAM delivery services. The use of the NORM FEC
Object Transmission Information header extension is OPTIONAL with
NORM_DATA messages.

NORM_CMD(FLUSH) Sender command to excite receivers for repair requests in lieu of ongoing
NORM_DAT A transmissions. Note the use of the NORM_CMD(FLUSH) for
positive acknowledgment of data receipt is OPTIONAL.

NORM_CMD(SQUELCH) Sender command to advertise its current valid repair window in response to
invalid requests for repair.

NORM_CMD(REPAIR_ADV) Sender command to advertise current repair (and congestion control state) to
group when unicast feedback messages are detected. Used to control/suppress
excessive receiver feedback in asymmetric multicast topologies.

NORM_CMD(CC) Sender command used in collection of round trip timing and congestion control
status from group (This may be OPTIONAL if alternative congestion control
mechanism and round trip timing collection is used).

NORM_NACK Receiver message used to request repair of missing transmitted content.

NORM_ACK Receiver message used to proactively provide feedback for congestion control
purposes. Also used with the OPTIONAL NORM Positive Acknowledgement
Process.

This document also describes the following message types and associated mechanisms which are OPTIONAL for complying
NORM protocol implementations:

Message Type Purpose

NORM_INFO Sender message for providing ancillary context information associated with
NORM transport objects. The use of the NORM FEC Object Transmission
Information header extension is OPTIONAL with NORM_INFO messages.

NORM_CMD(EOT) Sender command to indicate it has reach end-of-transmission and will no longer
respond to repair requests.

NORM_CMD(ACK_REQ) Sender command to support application-defined, positively acknowledged com-
mands sent outside of the context of the bulk data content being transmitted.
The NORM Positive Acknowledgement Procedure associated with this message
type is OPTIONAL.

NORM_CMD(APPLICATION) Sender command containing application-defined commands sent outside of the
context of the bulk data content being transmitted.

NORM_REPORT Optional message type reserved for experimental implementations of the NORM
protocol.

4.0 NORM Message Formats

As mentioned in Section 2.1, there are two primary classes of NORM messages: sender messages and receiver messages.
NORM_CMD, NORM_INFO, and NORM_DATA message types are generated by senders of data content, and NORM_NACK and
NORM_ACK messages generated by receivers within a NormSession. An auxillary message type of NORM_REPORT is also pro-
vided for experimental purposes. This section describes the message formats used by the NORM protocol. These messages and

Adamson, Bormann, et al. Expires May 2004 [Page 7]

Internet Draft NORM Protocol November 2003

their fields are referenced in the detailed functional description of the NORM protocol given in Section 5.0. Individual NORM
messages are designed to be compatible with the MTU limitations of encapsulating Internet protocols including IPv4, IPv6, and
UDP. The current NORM protocol specification assumes UDP encapsulation and leverages the transport features of UDP. The
NORM messages are independent of network addresses and can be used in IPv4 and IPv6 networks.

4.1 NORM Common Message Header and Extensions

There are some common message fields contained in all NORM message types. Additionally, a header extension mechanism is
defined to expand the functionality of the NORM protocol without revision to this document. All NORM protocol messages
begin with a common header with information fields as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type | hdr_len | sequence |
+-+
| source_id |
+-+

NORM Common Message Header Format

The "version" field is a 4-bit value indicating the protocol version number. NORM implementations SHOULD ignore received
messages with version numbers different from their own. This number is intended to indicate and distinguish upgrades of the
protocol which may be non-interoperable. The NORM version number for this specification is 1.

The message "type" field is a 4-bit value indicating the NORM protocol message type. These types are defined as follows:

Message Value

NORM_INFO 1
NORM_DATA 2
NORM_CMD 3
NORM_NACK 4
NORM_ACK 5
NORM_REPORT 6

The 8-bit "hdr_len" field indicates the number of 32-bit words that comprise the given message’s header portion. This is used to
facilitate header extensions that may be applied. The presence of header extensions are implied when the "hdr_len" value is
greater than the base value for the given message "type".

The "sequence" field is a 16-bit value that is set by the message originator as a monotonically increasing number incremented
with each NORM message transmitted to a given destination address. A "sequence" field number space SHOULD be maintained
for messages sent to the NormSession group address. This value can be monitored by receiving nodes to detect packet losses in
the transmission from a sender and used in estimating raw packet loss for congestion control purposes. Note that this value is
NOT used in the NORM protocol to detect missing reliable data content and does NOT identify the application data or FEC pay-
load that may be attached. With message authentication, the "sequence" field may also be leveraged for protection from message
"replay" attacks, particularly of NORM_NACK or other feedback messages. In this case, the receiver node should maintain a
monotonically increasing "sequence" field space for each destination to which it transmits (This may be multiple destinations
when unicast feedback is used). The size of this field is intended to be sufficient to allow detection of a reasonable range of
packet loss within the delay-bandwidth product of expected network connections.

The "source_id" field is a 32-bit value identifying the node that sent the message. A participant’s NORM node identifier

Adamson, Bormann, et al. Expires May 2004 [Page 8]

Internet Draft NORM Protocol November 2003

(NormNodeId) can be set according to application needs but unique identifiers must be assigned within a single NormSession. In
some cases, use of the host IP address or a hash of it can suffice, but alternative methodologies for assignment and potential colli-
sion resolution of node identifiers within a multicast session need to be considered. For example, the "source identifier" mecha-
nism defined in the Real-Time Protocol (RTP) specification [19] may be applicable to use for NORM node identifiers. At this
point in time, the protocol makes no assumptions about how these unique identifiers are actually assigned.

NORM Header Extensions

When header extensions are applied, they follow the message type’s base header and precede any payload portion. There are two
formats for header extensions, both of which begin with an 8-bit "het" (header extension type) field. One format is provided for
variable-length extensions with "het" values in the range from 0 through 127. The other format is for fixed length (one 32-bit
word) extensions with "het" values in the range from 128 through 255. These formats are given here:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| het <=127 | hel | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Header Extension Content |
| ... |
+-+

NORM Variable Length Header Extension Format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| ext_type >=128| ext_len | Header Extension Content |
+-+

NORM Fixed Length (32-bit) Header Extension Format

The "Header Extension Content" portion of these header extension format is defined for each header extension type defined for
NORM messages. Some header extensions are defined within this document for NORM baseline FEC and congestion control
operations.

4.2 NORM Sender Messages

NORM sender messages include the NORM_DATA type, the NORM_INFO type, and the NORM_CMD type. NORM_DATA and
NORM_INFO messages contain application data content while NORM_CMD messages are used for various protocol control func-
tions.

4.2.1 NORM_DAT A Message

The NORM_DATA message is expected to be the predominant type transmitted by NORM senders. These messages are used to
encapsulate segmented data content for objects of type NORM_OBJECT_DATA, NORM_OBJECT_FILE, and
NORM_OBJECT_STREAM. NORM_DATA messages may contain original or FEC-encoded application data content.

The format of NORM_DATA messages is comprised of three logical portions: 1) a fixed-format NORM_DATA header portion, 2)
an FEC Payload ID portion with a format dependent upon the FEC encoding used, and 3) a payload portion that includes length
and offset fields as well as application data content. Additionally, NORM implementations MAY extend the NORM_DATA
header to include an FEC Object Transmission Information (EXT_FTI) header extension. This allows NORM receivers to

Adamson, Bormann, et al. Expires May 2004 [Page 9]

Internet Draft NORM Protocol November 2003

automatically allocate resources and properly perform FEC decoding without the need for pre-configuration or out-of-band infor-
mation.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=2| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flags | fec_id | object_transport_id |
+-+
| fec_payload_id |
| ... |
+-+
| header_extensions (if applicable) |
| ... |
+-+
| payload_len* | payload_offset (msb)* |
+-+
| payload_offset (lsb)* |
+-+
| payload_data* |
| ... |
+-+

NORM_DATA Message Format

*NOTE: The "payload_len" and "payload_offset" fields in the payload portion of NORM_DATA messages are present only when
systematic FEC codes (e.g., "fec_id" = 129) are used. For such FEC codes, these fields contain actual length and offset values
for the encapsulated application data segment for NORM_DATA messages containing original data information. However, in
NORM_DATA messages containing parity information for a coding block, these fields are not actual length or offset values but
are instead values computed from FEC encoding of the "payload_len" and "payload_offset" fields of the _data_ segments of the
applicable coding block. For systematic FEC codes, parity segments can be identified as segments where "encoding_symbol_id
>= source_block_len", while data segments are those where "encoding_symbol_id < source_block_len".

The "version", "type", "hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header as described in
Section 4.1. The value of the NORM_DATA "type" field is 2. The NORM_DATA _base_ "hdr_len" value is 4 (32-bit words) plus
the size of the "fec_payload_id" field. The "fec_payload_id" field size depends upon the FEC encoding used for the referenced
NormObject. The "fec_id" field is used to indicate the FEC coding type. For example, when small block, systematic codes are
used, a "fec_id" value of 129 is indicated and the size of the "fec_payload_id" is two 32-bit words. In this case the NORM_DATA
base "hdr_len" value is 6. The cumulative size of any header extensions applied is added into the "hdr_len" field.

The "instance_id" field contains a value generated by the sender to uniquely identify its current instance of participation in the
NormSession. This allows receivers to detect when senders have perhaps left and rejoined a session in progress. When a sender
(identified by its "source_id") is detected to have a new "instance_id", the NORM receivers SHALL drop their previous state on
the sender and begin reception anew.

The "grtt" field contains a non-linear quantized representation of the sender’s current estimate of group round-trip time (GRTT)
(This is also referred to as R_max in the TFMCC Building Block [17]). This value is used to control timing of the NACK repair
process and other aspects of protocol operation as described in this document. The algorithm for encoding and decoding this
field is described in the RMT NORM Building Block document[14].

Adamson, Bormann, et al. Expires May 2004 [Page 10]

Internet Draft NORM Protocol November 2003

The "backoff" field value is used by receivers to determine the maximum backoff timer value used in the timer-based NORM
NACK feedback suppression. This 4-bit field supports values from 0-15 which is multiplied by the sender GRTT to determine
the maximum backoff timeout. The "backoff" field informs the receiver set of the sender’s backoff factor parameter "Ksender".
Recommended values and their use are described in the NORM receiver NACK procedure description in Section 5.3.

The "gsize" field contains a representation of the sender’s current estimate of group size. This 4-bit field can roughly represent
values from ten to 500 million where the most significant bit value of 0 or 1 represents a mantissa of 1 or 5, respectively and the
three least significant bits incremented by one represent a base 10 exponent (order of magnitude). For examples, a field value of
"0x0" represents 1.0e+01 (10), a value of "0x8" represents 5.0e+01 (50), a value of "0x1" represents 1.0e+02 (100), and a value
of "0xf" represents 5.0e+08. For NORM feedback suppression purposes, the group size does not need to be represented with a
high degree of precision. The group size may even be estimated somewhat conservatively (i.e. overestimated) to maintain low
levels of feedback traffic. A default group size estimate of 10,000 ("gsize" = 0x4) is recommended for general purpose reliable
multicast applications using the NORM protocol.

The "flags" field contains a number of different binary flags providing information and hints regarding how the receiver should
handle the identified object. Defined flags in this field include:

Flag Value Purpose

NORM_FLAG_REPAIR 0x01 Indicates message is a repair transmission

NORM_FLAG_EXPLICIT 0x02 Indicates a repair segment intended to meet a specific receiver erasure,
as compared to parity segments provided by the sender for general pur-
pose (with respect to an FEC coding block) erasure filling.

NORM_FLAG_INFO 0x04 Indicates availability of NORM_INFO for object.

NORM_FLAG_UNRELIABLE 0x08 Indicates that repair transmissions for the specified object will be
unavailable (One-shot, best effort transmission).

NORM_FLAG_FILE 0x10 Indicates object is "file-based" data (hint to use disk storage for recep-
tion).

NORM_FLAG_STREAM 0x20 Indicates object is of type NORM_OBJECT_STREAM.

NORM_FLAG_MSG_START 0x20 Marks the first segment of application messages embedded in
NORM_OBJECT_STREAMs.

The NORM_FLAG_REPAIR flag is set when the associated message is a repair transmission. This information can be used by
receivers to help observe a join policy where it is desired that newly joining receivers only begin participating in the NACK pro-
cess upon receipt of new (non-repair) data content. The NORM_FLAG_EXPLICIT flag is used to mark repair messages sent
when the data sender has exhausted its ability to provide "fresh" (previously untransmitted) parity segments as repair. These flag
could possibly be used by intermediate systems implementing functionality to control subcasting of repair content to different
legs of a reliable multicast topology with disparate repair needs. The NORM_FLAG_INFO flag is set only when optional
NORM_INFO content is actually available for the associated object. Thus, receivers will NACK for retransmission of
NORM_INFO only when it is available for a given object. The NORM_FLAG_UNRELIABLE flag is set when the sender wishes
to transmit an object with only "best effort" delivery and will not supply repair transmissions for the object. NORM receivers
SHOULD NOT execute repair requests for objects marked with the NORM_FLAG_UNRELIABLE flag. Note that receivers may
inadvertently request repair of such objects when all segments (or info content) for those objects are not received (i.e. a gap in the
"object_transport_id" sequence is noted). In this case, the sender should invoke the NORM_CMD(SQUELCH) process as
described in Section 4.2.3.

The NORM_FLAG_FILE flag can be set as a "hint" from the sender that the associated object should be stored in non-volatile
storage. The NORM_FLAG_STREAM flag is set when the identified object is of type NORM_OBJECT_STREAM. When the
NORM_FLAG_STREAM flag is set, the NORM_FLAG_MSG_START can be optionally used to mark the first data segments of
application-layer messages transported within the NORM stream. This allows NORM receiver applications to "synchronize"
with NORM senders and to be able to properly interpret application layer data when joining a NORM session already in
progress. In practice, the NORM implementation MAY set this flag for the segment transmitted following an explicit "flush" of

Adamson, Bormann, et al. Expires May 2004 [Page 11]

Internet Draft NORM Protocol November 2003

the stream by the application.

The "fec_id" field corresponds to the FEC Encoding Identifier described in the FEC Building Block document [16]. The
"fec_id" value implies the format of the "fec_payload_id" field and, coupled with FEC Object Transmission Information, the pro-
cedures to decode FEC encoded content. Small block, systematic codes ("fec_id" = 129) are expected to be used for most
NORM purposes and the NORM_OBJECT_STREAM requires systematic FEC codes for most efficient performance.

The "object_transport_id" field is a monotonically and incrementally increasing value assigned by the sender to NormObjects
being transmitted. Transmissions and repair requests related to that object use the same "object_transport_id" value. For ses-
sions of very long or indefinite duration, the "object_transport_id" field may be repeated, but it is presumed that the 16-bit field
size provides an adequate enough sequence space to avoid object confusion amongst receivers and sources (i.e. receivers
SHOULD re-synchronize with a server when receiving object sequence identifiers sufficiently out-of-range with the current state
kept for a given source). During the course of its transmission within a NORM session, an object is uniquely identified by the
concatenation of the sender "source_id" and the given "object_transport_id". Note that NORM_INFO messages associated with
the identified object carry the same "object_transport_id" value.

The "fec_payload_id" identifies the attached NORM_DATA "payload" content. The size and format of of the "fec_payload_id"
field depends upon the FEC type indicated by the "fec_id" field. These formats are given in the FEC Building Block document
[16] and any subsequent extensions of that document. As an example, the format of the "fec_payload_id" format small block,
systematic codes ("fec_id" = 129) given here:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| source_block_number |
+-+
| source_block_len | encoding_symbol_id |
+-+

Small Block, Systematic Code ("fec_id" = 129) "fec_payload_id" Format

The FEC payload identifier "source_block_number", "source_block_len", and "encoding_symbol_id" fields correspond to the
"Source Block Number", "Source Block Length, and "Encoding Symbol ID" fields of the FEC Payload ID format given by the
IETF FEC Building Block document[16]. The "source_block_number" identifies the coding block’s relative position with a Nor-
mObject. Note that, for NormObjects of type NORM_OBJECT_STREAM, the "source_block_number" may wrap for very long
lived sessions. The "source_block_len" indicates the number of user data segments in the identified coding block. Given the
"source_block_len" information of how many symbols of application data are contained in the block, the receiver can determine
whether the attached segment is data or parity content and treat it appropriately. The "encoding_symbol_id" identifies which
specific symbol (segment) within the coding block the attached payload conveys. Depending upon the value of the "encod-
ing_symbol_id" and the associated "source_block_len" parameters for the block, the symbol (segment) referenced may be a user
data or an FEC parity segment. For systematic codes, encoding symbols numbered less than the source_block_len contain
original application data while segments greater than or equal to source_block_len contain parity symbols calculated for
the block. The concatenation of object_transport_id::fec_payload_id can be viewed as a unique transport proto-
col data unit identifier for the attached segment with respect to the NORM sender’s instance within a session.

Additional FEC Object Transmission Information (as described in the FEC Building Block document[16]) is required to properly
receive and decode NORM transport objects. This information MAY be provided as out-of-band session information. However,
in some cases, it may be useful for the sender to include this information "in band" to facilitate receiver operation with minimal
preconfiguration. For this purpose, the NORM FEC Object Transmission Information Header Extension (EXT_FTI) is defined.
This header extension MAY be applied to NORM_DATA and NORM_INFO messages to provide this necessary information. The
exact format of the extension depends upon the FEC code in use, but in general it SHOULD contain any required details on the
FEC code in use (e.g., FEC Instance ID, etc) and the byte size of the associated NormObject (For the NORM_OBJECT_STREAM
type, this size corresponds to the stream buffer size maintained by the NORM sender). As an example, the format of the
EXT_FTI for small block systematic codes ("fec_id" = 129) is given here:

Adamson, Bormann, et al. Expires May 2004 [Page 12]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| het = 64 | hel = 4 | object_length (msb) |
+-+
| object_length (lsb) |
+-+
| fec_instance_id | segment_size |
+-+
| fec_max_block_len | fec_num_parity |
+-+

FEC Object Transmission Information Header Extension (EXT_FTI) for Small Block Systematic Codes ("fec_id" = 129)

The header extension type "het" field value for this header extension is 64. The header extension length "hel" depends upon the
format of the FTI for FEC code type identifed by the "fec_id" field. In this example (for "fec_id" = 129), the "hel" field value is
4.

The 48-bit "object_length" field indicates the total size of the object (in bytes) for the static object types of
NORM_OBJECT_FILE and NORM_OBJECT_DATA. This information is used by receivers to determine storage requirements
and/or allocate storage for the received object. Receivers with insufficient storage capability may wish to forego reliable recep-
tion (i.e. not NACK for) of the indicated object. In the case of objects of type NORM_OBJECT_STREAM, the "object_length"
field is used by the sender to indicate the size of its stream buffer to the receiver group. In turn, the receivers SHOULD use this
information to allocate a stream buffer for reception of corresponding size.

The "fec_instance_id" corresponds to the "FEC Instance ID" described in the FEC Building Block document[16]. In this case,
the "fec_instance_id" SHALL be a value corresponding to the particular type of Small Block Systematic Code being used (e.g.,
Reed-Solomon GF(2ˆ8), Reed-Solomon GF(2ˆ16), etc). The standardized assignment of FEC Instance ID values is described in
[16].

The "segment_size" field indicates the sender’s current setting for maximum message payload content (in bytes). This allows
receivers to allocate appropriate buffering resources and to determine other information in order to properly process received data
messaging.

The "fec_max_block_len" indicates the current maximum number of user data segments per FEC coding block to be used by the
sender during the session. This allows receivers to allocate appropriate buffer space for buffering blocks transmitted by the
sender.

The "fec_num_parity" corresponds to the "maximum number of of encoding symbols that can be generated for any source block"
as described in for FEC Object Transmission Information for Small Block Systematic Codes in the FEC Building Block docu-
ment [16]. For example, Reed-Solomon codes may be arbitrarily shortened to create different code variations for a given block
length. In the case of Reed-Solomon (GF(2ˆ8) and GF(2ˆ16) codes, this value indicates the maximum number of parity segments
available from the sender for the coding blocks. This field MAY be interpreted differently for other systematic codes as they are
defined.

The payload portion of NORM_DAT A messages includes the data or FEC payload and additional fields indicating the payload
content "length" and "offset" in the case that payload content is recovered using FEC decoding.

The "payload_len" and "payload_offset" fields are used to specify the size and relative position (within the NormObject) of the
application content included in the message payload. For senders employing systematic FEC encoding, these fields correspond
to actual length and offset values for the payload of messages which contain original data content. For NORM_DATA messages
containing calculated parity content, these fields will actually contain values computed by FEC encoding of the "payload_len"
and "payload_offset" values of the NORM_DATA data segments of the corresponding FEC coding block. Thus, the "payload_len"
and "payload_offset" values of missing data content can be determined when decoding an FEC coding block. Note that these

Adamson, Bormann, et al. Expires May 2004 [Page 13]

Internet Draft NORM Protocol November 2003

fields are present in NORM_DATA messages only when small block, systematic FEC encoding is used. Also, these fields do
not contribute to the value of the NORM_DATA "hdr_len" field.

The "payload_data" field contains the original application data or computed parity content associated with the segment. The
maximum length of this field SHALL be limited to a maximum of the sender’s NormSegmentSize as given in the FTI for the
object. The length of this field for messages containing parity content will always be of length NormSegmentSize. When encod-
ing data segments of varying sizes, the FEC encoder SHALL assume ZERO value padding for data segments with length less
than the NormSegmentSize. When applicable, the receiver MAY use the "payload_len" information to properly retrieve received
data content and deliver it to the application. A sender’s NormSegmentSize SHOULD generally be constant for the duration of a
given sender’s term of participation in the session, but may possibly vary on a per-object basis. The NormSegmentSize is
expected to be configurable by the sender application prior to session participation as needed for network topology maximum
transmission unit (MTU) considerations. For IPv6, MTU discovery may be possibly leveraged at session startup to perform this
configuration.

4.2.2 NORM_INFO Message

The NORM_INFO message is used to convey OPTIONAL, application-defined, "out-of-band" context information for transmitted
NormObjects. An example NORM_INFO use for bulk file transfer is to place MIME type information for the associated file, data,
or stream object into the NORM_INFO payload. Receivers may use the NORM_INFO content to make a decision as whether to
participate in reliable reception of the associated object. Each NormObject can have an independent unit of NORM_INFO associ-
ated with it. NORM_DATA messages contain a flag to indicate the availability of NORM_INFO for a given NormObject. NORM
receivers may NACK for retransmission of NORM_INFO when they hav e not received it for a given NormObject. The size of the
NORM_INFO content is limited to that of a single NormSegmentSize for the given sender. This atomic nature allows the
NORM_INFO to be rapidly and efficiently repaired within the NORM reliable transmission process.

When NORM_INFO content is available for a NormObject, the NORM_FLAG_INFO flag SHALL be set in NORM_DATA mes-
sages for the corresponding "object_transport_id" and the NORM_INFO message shall be transmitted as the first message for the
NormObject.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=1| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flags | fec_id | object_transport_id |
+-+
| header_extensions (if applicable) |
| ... |
+-+
| payload_data |
| ... |
+-+

NORM_INFO Message Format

The "version", "type","hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header as described in
Section 4.1. The value of "hdr_len" field when no header extensions are present is 4.

The "instance_id", "grtt", "backoff", "gsize", "flags", "fec_id", and "object_transport_id" fields carry the same information and

Adamson, Bormann, et al. Expires May 2004 [Page 14]

Internet Draft NORM Protocol November 2003

serve the same purpose as with NORM_DATA messages. These values allow the receiver to prepare appropriate buffering, etc, for
further transmissions from the sender when NORM_INFO is the first message received.

As with NORM_DATA messages, the NORM FTI Header Extension (EXT_FTI) may be optionally applied to NORM_INFO mes-
sages. To conserve protocol overhead, some NORM implementations may wish to apply the EXT_FTI when used to
NORM_INFO messages only and not to NORM_DATA messages.

The NORM_INFO "payload_data" field contains sender application-defined content which can be used by receiver applications
for various purposes as described above.

4.2.3 NORM_CMD Message

NORM_CMD messages are transmitted by senders to perform a number of different protocol functions. This includes functions
such as round-trip timing collection, congestion control functions, synchronization of sender/receiver repair "windows", and noti-
fication of sender status. A core set of NORM_CMD messages is enumerated. Additionally, a range of command types remain
available for potential application-specific use. Some NORM_CMD types may have dynamic content attached. Any attached con-
tent will be limited to maximum length of the sender NormSegmentSize to retain the atomic nature of commands. All
NORM_CMD messages begin with a common set of fields, after the usual NORM message common header. The standard
NORM_CMD fields are:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor | |
+-+-+-+-+-+-+-+-+ NORM_CMD Content +
| ... |
+-+

NORM_CMD Standard Fields

The "version", "type", "hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header as described in
Section 4.1. The value of the "hdr_len" field for NORM_CMD messages without header extensions present depends upon the "fla-
vor" field.

The "instance_id", "grtt", "backoff", and "gsize" fields provide the same information and serve the same purpose as with
NORM_DATA and NORM_INFO messages. The "flavor" field indicates the type of command to follow. The remainder of the
NORM_CMD message is dependent upon the command type ("flavor"). NORM command flavors include:

Adamson, Bormann, et al. Expires May 2004 [Page 15]

Internet Draft NORM Protocol November 2003

Command Flavor Value Purpose

NORM_CMD(FLUSH) 1 Used to indicate sender temporary end-of-transmission.
(Assists in robustly initiating outstanding repair requests
from receivers). May also be optionally used to collect
positive acknowledgement of reliable reception from sub-
set of receivers.

NORM_CMD(EOT) 2 Used to indicate sender permanent end-of-transmission.

NORM_CMD(SQUELCH) 3 Used to advertise sender’s current repair window in
response to out-of-range NACKs from receivers.

NORM_CMD(CC) 4 Used for GRTT measurement and collection of conges-
tion control feedback.

NORM_CMD(REPAIR_ADV) 5 Used to advertise sender’s aggregated repair/feedback
state for suppression of unicast feedback from receivers.

NORM_CMD(ACK_REQ) 6 Used to request application-defined positive acknowl-
edgement from a list of receivers (OPTIONAL).

NORM_CMD(APPLICATION) 7 Used for application-defined purposes which may need to
temporarily preempt data transmission (OPTIONAL).

NORM_CMD(FLUSH) Message

The NORM_CMD(FLUSH) command is sent when the sender reaches the end of all data content and pending repairs it has
queued for transmission. This may indicate a temporary or permanent end of data transmission, but the sender is still willing to
respond to repair requests. This command is repeated once per 2*GRTT to excite the receiver set for any outstanding repair
requests up to and including the transmission point indicated within the NORM_CMD(FLUSH) message. The number of repeats
is equal to NORM_ROBUST_FACTOR unless a list of receivers from which explicit positive acknowledgement ("ack-
ing_node_list") is given. In that case, the "acking_node_list" is updated as acknowledgements are received and the
NORM_CMD(FLUSH) is repeated according to the mechanism described in Section 5.5.3. The greater the
NORM_ROBUST_FACTOR, the greater the probability that all applicable receivers will be excited for acknowledgement or repair
requests (NACKs) _and_ that the corresponding NACKs are delivered to the sender. If a NORM_NACK message interrupts the
flush process, the sender will re-initiate the flush process after any resulting repair transmissions are completed.

Note that receivers also employ a timeout mechanism to self-initiate NACKing (if there are outstanding repair needs) when no
messages of any type are received from a sender. This inactivity timeout is related to 2*GRTT*NORM_ROBUST_FACTOR and
will be discussed more later. With a sufficient NORM_ROBUST_FACTOR value, data content is delivered with a high assurance
of reliability. The penalty of a large NORM_ROBUST_FACTOR value is potentially excess sender NORM_CMD(FLUSH) trans-
missions and a longer timeout for receivers to self-initiate the terminal NACK process.

For finite-size transport objects such as NORM_OBJECT_DATA and NORM_OBJECT_FILE, the flush process (if there are no
further pending objects) occurs at the end of these objects. Thus, FEC repair information is always available for repairs in
response to repair requests elicited by the flush command. However, for NORM_OBJECT_STREAM, the flush may occur at any
time, including in the middle of an FEC coding block if systematic FEC codes are employed. In this case, the sender will not yet
be able to provide FEC parity content as repair for the concurrent coding block and will be limited to explicitly repairing stream
data content for that block. Applications that anticipate frequent flushing of stream content SHOULD be judicious in the selec-
tion of the FEC coding block size (i.e., do not use a very large coding block size if frequent flushing occurs). For example, a reli-
able multicast application transmitting an on-going series of intermittent, relatively small messaging content will need to trade-
off using the NORM_OBJECT_DATA paradigm versus the NORM_OBJECT_STREAM paradigm with an appropriate FEC coding
block size. This is analogous to application trade-offs for other transport protocols such as the selection of different TCP modes
of operation such as "no delay", etc.

Adamson, Bormann, et al. Expires May 2004 [Page 16]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 1 | fec_id | object_transport_id |
+-+
| fec_payload_id |
| ... |
+-+
| acking_node_list (if applicable) |
| ... |
+-+

NORM_CMD(FLUSH) Message Format

In addition to the NORM common message header and standard NORM_CMD fields, the NORM_CMD(FLUSH) message contains
fields to identify the current status and logical transmit position of the sender.

The "fec_id" field indicates the FEC type used for the flushing "object_transport_id" and implies the size and format of the
"fec_payload_is" field. Note the "hdr_len" value for the NORM_CMD(FLUSH) message is 4 plus the size of the "fec_pay-
load_id" field when no header extensions are present.

The "object_transport_id" and "fec_payload_id" fields indicate the sender’s current logical "transmit position". These fields are
interpreted in the same manner as in the NORM_DATA message type. Upon receipt of the the NORM_CMD(FLUSH), receivers
are expected to check their completion state _through_ (including) this transmission position. If receivers have outstanding
repair needs in this range, they SHALL initiate the NORM NACK Repair Process as described in Section 5.3. If receivers have
no outstanding repair needs, no response to the NORM_CMD(FLUSH) is generated.

For NORM_OBJECT_STREAM objects using systematic FEC codes, receivers MUST request "explicit-only" repair of the identi-
fied "source_block_number" if the given "encoding_symbol_id" is less than the "source_block_len". This condition indicates the
sender has not yet completed encoding the corresponding FEC block and parity content is not yet available. An "explicit-only"
repair request consists of NACK content for the applicable "source_block_number" which does not include any requests for par-
ity-based repair. This allows NORM sender applications to "flush" an ongoing stream of transmission when needed, even if in
the middle of an FEC block. Once the sender resumes stream transmission and passes the end of the pending coding block, sub-
sequent NACKs from receivers SHALL request parity-based repair as usual. Note that the use of a systematic FEC code is
assumed here. Normal receiver NACK inititation and construction is discussed in detail in Section 5.3.

The OPTIONAL "acking_node_list" field contains a list of NormNodeIds for receivers from which the sender is requesting
explicit positive acknowledgement of reception up through the transmission point identified by the "object_transport_id" and
"fec_payload_id" fields. The length of the list can be inferred from the length of the received NORM_CMD(FLUSH) message.
When the "acking_node_list" is present, the lightweight positive acknowledgement process described in Section 5.5.3 SHALL be
observed.

NORM_CMD(EOT) Message

The NORM_CMD(EOT) command is sent when the sender reaches permanent end-of-transmission with respect to the NormSes-
sion and will not respond to further repair requests. This allows receivers to gracefully reach closure of operation with this
sender (without requiring any timeout) and free any resources that are no longer needed.

Adamson, Bormann, et al. Expires May 2004 [Page 17]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 2 | reserved |
+-+

NORM_CMD(EOT) Message Format

The value of the "hdr_len" field for NORM_CMD(EOT) messages without header extensions present is 4. The "reserved" field is
reserved for future use and MUST be set to an all ZERO value. Receivers MUST ignore the "reserved" field.

NORM_CMD(SQUELCH) Message

The NORM_CMD(SQUELCH) command is transmitted in response to outdated or invalid NORM_NACK content received by the
sender. Inv alid NORM_NACK content consists of repair requests for NormObjects for which the sender is unable or unwilling to
provide repair. This includes repair requests for outdated objects, aborted objects, or those objects which the sender previously
transmitted marked with the NORM_FLAG_UNRELIABLE flag. This command indicates to receivers what content is available
for repair, thus serving as a description of the sender’s current "repair window". Receivers SHALL not generate repair requests
for content identified as invalid by a NORM_CMD(SQUELCH).

The NORM_CMD(SQUELCH) command is sent once per 2*GRTT at the most. The NORM_CMD(SQUELCH) advertises the cur-
rent "repair window" of the sender by identifying the earliest (lowest) transmission point for which it will provide repair, along
with an encoded list of objects from that point forward that are no longer valid for repair. This mechanism allows the sender
application to cancel or abort transmission and/or repair of specific previously enqueued objects. The list also contains the iden-
tifiers for any objects within the repair window that were sent with the NORM_FLAG_UNRELIABLE flag set. In normal condi-
tions, it is expected the NORM_CMD(SQUELCH) will be needed infrequently, and generally only to provide a reference repair
window for receivers who have fallen "out-of-sync" with the sender due to extremely poor network conditions.

The starting point of the invalid NormObject list begins with the lowest invalid NormTransportId greater than the current "repair
window" start from the invalid NACK(s) that prompted the generation of the squelch. The length of the list is limited by the
sender’s NormSegmentSize. This allows the receivers to learn the status of the sender’s applicable object repair window with
minimal transmission of NORM_CMD(SQUELCH) commands. The format of the NORM_CMD(SQUELCH) message is:

Adamson, Bormann, et al. Expires May 2004 [Page 18]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| version | type = 3 | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 3 | fec_id | object_transport_id |
+-+
| fec_payload_id |
| ... |
+-+
| invalid_object_list |
| ... |
+-+

NORM_CMD(SQUELCH) Message Format

In addition to the NORM common message header and standard NORM_CMD fields, the NORM_CMD(SQUELCH) message con-
tains fields to identify the earliest logical transmit position of the sender’s current repair window and an "invalid object list"
beginning with the index of the logically earliest invalid repair request from the offending NACK message which initiated the
squelch transmission.

The "object_transport_id" and "fec_payload_id" fields are concatenated to indicate the beginning of the sender’s current repair
window (i.e., the logically earliest point in its transmission history for which the sender can provide repair). The "fec_id" field
implies the size and format of the "fec_payload_id" field. This serves as an advertisement of a "synchronization point" for
receivers to request repair. Note, that while an "encoding_symbol_id" may be included in the "fec_payload_id" field, the
sender’s repair window SHOULD be aligned on FEC coding block boundaries and thus the "encoding_symbol_id" SHOULD be
zero.

The "invalid_object_list" is a list of 16-bit NormTransportIds that, although they are within the range of the sender’s current
repair window, are no longer available for repair from the sender. For example, a sender application may dequeue an out-of-date
object even though it is still within the repair window. The total size of the "invalid_object_list" content is can be determined
from the packet’s payload length and is limited to a maximum of the NormSegmentSize of the sender. Thus, for very large repair
windows, it is possible that a single NORM_CMD(SQUELCH) message may not be capable of listing the entire set of invalid
objects in the repair window. In this case, the sender SHALL ensure that the list begins with a NormObjectId that is greater than
or equal to the lowest ordinal invalid NormObjectId from the NACK message(s) that prompted the NORM_CMD(SQUELCH) gen-
eration. The NormObjectIds in the "invalid_object_list" MUST be greater than the "object_transport_id" marking the beginning
of the sender’s repair window. This insures convergence of the squelch process, even if multiple invalid NACK/ squelch itera-
tions are required. This explicit description of invalid content within the sender’s current window allows the sender application
(most notably for discrete "object" based transport) to arbitrarily invalidate (i.e. dequeue) portions of enqueued content (e.g., cer-
tain objects) for which it no longer wishes to provide reliable transport.

NORM_CMD(CC) Message

The NORM_CMD(CC) messages contains fields to enable sender-to-receiver group greatest round-trip time (GRTT) measurement
and to excite the group for congestion control feedback. A baseline NORM congestion control scheme (NORM-CC), based on
the TCP-Friendly Multicast Congestion Control (TFMCC) Building Block [17] is described in Section 5.5.2 of this document.
The NORM_CMD(CC) message is usually transmitted as part of NORM-CC congestion control operation. A NORM header
extension is defined below to be used with the NORM_CMD(CC) message to support NORM-CC operation. Different header
extensions may be defined for the NORM_CMD(CC) (and/or other NORM messages as needed) to support alternative congestion

Adamson, Bormann, et al. Expires May 2004 [Page 19]

Internet Draft NORM Protocol November 2003

control schemes in the future. If NORM is operated in a private network with congestion control operation disabled, the
NORM_CMD(CC) message is then used for GRTT measurement only and may optionally be sent less frequently than with con-
gestion control operation.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 4 | reserved | cc_sequence |
+-+
| send_time_sec |
+-+
| send_time_usec |
+-+
| header extensions (if applicable) |
| ... |
+-+
| cc_node_list (if applicable) |
| ... |
+-+

NORM_CMD(CC) Message Format

The NORM common message header and standard NORM_CMD fields serve their usual purposes.

The "reserved" field is for potential future use and should be set to ZERO in this version of the NORM protocol.

The "cc_sequence" field is a sequence number applied by the sender. For NORM-CC operation, it is used to provide functional-
ity equivalent to the "feedback round number" (fb_nr)described in the TFMCC Building Block document [17]. The most
recently received "cc_sequence" value is recorded by receivers and can be fed back to the sender in congestion control feedback
generated by the receivers for that sender. The "cc_sequence" number can also be used in NORM implementations to assess how
recently a receiver has received NORM_CMD(CC) probes from the sender. This can be useful instrumentation for complex or
experimental multicast routing environments.

The "send_time" field is a timestamp indicating the time that the NORM_CMD(CC) message was transmitted. This consists of a
64-bit field containing 32-bits with the time in seconds ("sent_time_sec") and 32-bits with the time in microseconds
("send_time_usec") since some reference time the source maintains (usually 00:00:00, 1 January 1970). The byte ordering of the
fields is "Big Endian" network order. Receivers use this timestamp adjusted by the amount of delay from the time they received
the NORM_CMD(CC) message to the time of their response as the "grtt_response" portion of NORM_ACK and NORM_NACK mes-
sages generated. This allows the sender to evaluate round-trip times to different receivers for congestion control and other (e.g.,
GRTT determination) purposes.

To facilitate the baseline NORM-CC scheme described in Section 5.2.2, a NORM-CC Rate header extension (EXT_RATE) is
defined to inform the group of the sender’s current transmission rate. This is used along with the loss detection "sequence" field
of all NORM sender messages and the NORM_CMD(CC) GRTT collection process to support NORM-CC congestion control
operation. The format of this header extension is as follows:

Adamson, Bormann, et al. Expires May 2004 [Page 20]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| ext_type = 128| reserved | send_rate |
+-+

NORM-CC Rate Header Extension Format (EXT_RATE)

The "send_rate" field indicates the sender’s current transmission rate in bytes per second. The 16-bit "send_rate" field consists of
12 bits of mantissa in the most significant portion and 4 bits of base 10 exponent (order of magnitude) information in the least
significant portion. The 12-bit mantissa portion of the field is scaled such that a floating point value of 0.0 corresponds to 0 and a
floating point value of 10.0 corresponds to 4096. Thus:

send_rate = (((int)(Value_mantissa * 4096.0 / 10.0 + 0.5)) << 4) | Value_exponent;

For example, to represent a transmission rate of 256kbps (3.2e+04 bytes per second), the lower 4 bits of the 16-bit field contain a
value of 0x04 to represent the exponent while the upper 12 bits contain a value of 0x51f as determined from the equation given
above:

send_rate = (((int)((3.2 * 4096.0 / 10.0) + 0.5)) << 4) | 4;

= (0x51f << 4) | 0x4

= 0x51f4

To decode the "send_rate" field, the following equation can be used:

value = (send_rate >> 4) * 10.0 / 4096.0 * power(10.0, (send_rate & x000f))

Note the maximum transmission rate representable by this scheme is approximately 9.99e+15 bytes per second.

When this extension is present, a "cc_node_list" may be attached as the payload of the NORM_CMD(CC) message. The presence
of this header extension also implies that NORM receivers should respond according to the procedures described in Section
5.2.2.

The "cc_node_list" consists of a list of NormNodeIds and their associated congestion control status. This includes the current
limiting receiver (CLR) node, any potential limiting receiver (PLR) nodes that have been identified, and some number of
receivers for which congestion control status is being provided, most notably including the receivers’ current RTT measurement.
The maximum length of the "cc_node_list" provides for at least the CLR and one other receiver, but may be configurable for
more timely feedback to the group. The list length can be inferred from the length of the NORM_CMD(CC) message.

Each item in the "cc_node_list" is in the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| cc_node_id |
+-+
| cc_flags | cc_rtt | cc_rate |
+-+

Congestion Control Node List Item Format

The "cc_node_id" is the NormNodeId of the receiver which the item represents.

Adamson, Bormann, et al. Expires May 2004 [Page 21]

Internet Draft NORM Protocol November 2003

The "cc_flags" field contains flags indicating the congestion control status of the indicated receiver. The following flags are
defined:

Flag Value Purpose

NORM_FLAG_CC_CLR 0x01 Receiver is the current limiting receiver (CLR).

NORM_FLAG_CC_PLR 0x02 Receiver is a potential limiting receiver (PLR).

NORM_FLAG_CC_RTT 0x04 Receiver has measured RTT with respect to sender.

NORM_FLAG_CC_START 0x08 Sender/receiver is in "slow start" phase of congestion control operation
(i.e. The receiver has not yet detected any packet loss and the "cc_rate"
field is the receiver’s actual measured receive rate).

NORM_FLAG_CC_LEAVE 0x10 Receiver is imminently leaving the session and its feedback should not
be considered in congestion control operation.

The "cc_rtt" contains a quantized representation of the RTT as measured by the sender with respect to the indicated receiver.
This field is valid only if the NORM_FLAG_CC_RTT flag is set in the "cc_flags" field. This one byte field is a quantized repre-
sentation of the RTT using the algorithm described in the NORM Building Block document [14].

The "cc_rate" field contains a representation of the receiver’s current calculated (during steady-state congestion control opera-
tion) or twice its measured (during the "slow start" phase) congestion control rate. This field is encoded and decoded using the
same technique as described for the NORM_CMD(CC) "send_rate" field.

NORM_CMD(REPAIR_ADV) Message

The NORM_CMD(REPAIR_ADV) message is used by the sender to "advertise" its aggregated repair state from NORM_NACK
messages accumulated during a repair cycle and/or congestion control feedback received. This message is sent only when the
sender has received NORM_NACK and/or NORM_ACK(CC) (when congestion control is enabled) messages via unicast transmis-
sion instead of multicast. By "echoing" this information to the receiver set, suppression of feedback can be achieved even when
receivers are unicasting that feedback instead of multicasting it among the group[11].

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 5 | flags | reserved |
+-+
| header extensions (if applicable) |
| ... |
+-+
| repair_adv_payload |
| ... |
+-+

NORM_CMD(REPAIR_ADV) Message Format

The "instance_id", "grtt", "backoff", "gsize", and "flavor" fields serve the same purpose as in other NORM_CMD messages. The
value of the "hdr_len" field when no extensions are present is 4.

Adamson, Bormann, et al. Expires May 2004 [Page 22]

Internet Draft NORM Protocol November 2003

The "flags" field provide information on the NORM_CMD(REPAIR_ADV) content. There is currently one
NORM_CMD(REPAIR_ADV) flag defined:

NORM_REPAIR_ADV_FLAG_LIMIT = 0x01

This flag is set by the sender when it is unable to fit its full current repair state into a single NormSegmentSize. If this flag is set,
receivers should limit their NACK response to generating NACK content only up through the maximum ordinal transmission
position (objectId::fecPayloadId) included in the "repair_adv_content".

When congestion control operation is enabled, a header extension may be applied to the NORM_CMD(REPAIR_ADV) represent-
ing the most limiting (in terms of congestion control feedback suppression) congestion control response. This allows the
NORM_CMD(REPAIR_ADV) message to suppress receiver congestion control responses as well as NACK feedback messages.
The field is defined as a header extension so that alternative congestion control schemes may be used with NORM without revi-
sion to this document. A NORM-CC Feedback Header Extension (EXT_CC) is defined to encapsulate congestion control feed-
back within NORM_NACK, NORM_ACK, and NORM_CMD(REPAIR_ADV) messages. If another congestion control technique
(e.g., Pragmatic General Multicast Congestion Control (PGMCC) [21]) is used within a NORM implementation, an additional
header extension MAY need to be defined encapsulate any required feedback content. The NORM-CC Feedback Header Exten-
sion format is:

+-+
| ext_type = 3 | ext_len = 3 | cc_sequence |
+-+
| cc_flags | cc_rtt | cc_loss |
+-+
| cc_rate | cc_reserved |
+-+

NORM-CC Feedback Header Extension (EXT_CC) Format

The "cc_sequence" field contains the current greatest "cc_sequence" value receivers have received in NORM_CMD(CC) mes-
sages from the sender. This information assists the sender in congestion control operation by providing an indicator of how cur-
rent ("fresh") the receiver’s round-trip measurement reference time is and whether the receiver has been successfully receiving
recent congestion control probes. For example, if it is apparent the receiver has not been receiving recent congestion control
probes (and thus possibly other messages from the sender), the sender may choose to take congestion avoidance measures. For
NORM_CMD(REPAIR_ADV) messages, the sender SHALL set the "cc_sequence" field value to the value set in the last
NORM_CMD(CC) message sent.

The "cc_flags" field contains bits representing the receiver’s state with respect to congestion control operation. The possible val-
ues for the "cc_flags" field are those specified for the NORM_CMD(CC) message node list item flags. These fields are used by
receivers in controlling (suppressing as necessary) their congestion control feedback. For NORM_CMD(REPAIR_ADV) mes-
sages, the NORM_FLAG_CC_RTT should be set only when all feedback messages received by the sender have the flag set.
Similarly, the NORM_FLAG_CC_CLR or NORM_FLAG_CC_PLR should be set only when no feedback has been received
from non-CLR or non-PLR receivers. And the NORM_FLAG_CC_LEAVE should be set only when all feedback messages the
sender has received hav e this flag set. These heuristics for setting the flags in NORM_CMD(REPAIR_ADV) ensure the most
effective suppression of receivers providing unicast feedback messages.

The "cc_rtt" field SHALL be set to a default maximum value and the NORM_FLAG_CC_RTT flag SHALL be cleared when no
receiver has yet received RTT measurement information. When a receiver has received RTT measurement information, it shall
set the "cc_rtt" value accordingly and set the NORM_FLAG_CC_RTT flag in the "cc_flags" field. For
NORM_CMD(REPAIR_ADV) messages, the sender SHALL set the "cc_rtt" field value to the largest non-CLR/non-PLR RTT it
has measured from receivers for the current feedback round.

The "cc_loss" field reperesents the receiver’s current packet loss fraction estimate for the indicated source. The loss fraction is a
value from 0.0 to 1.0 corresponding to a range of zero to 100 percent packet loss. The 16-bit "cc_loss" value is calculated by the

Adamson, Bormann, et al. Expires May 2004 [Page 23]

Internet Draft NORM Protocol November 2003

following formula:

"cc_loss" = decimal_loss_fraction * 65535.0

For NORM_CMD(REPAIR_ADV) messages, the sender SHALL set the "cc_loss" field value to the largest non-CLR/non-PLR
loss estimate it has received from receivers for the current feedback round.

The "cc_rate" field represents the receivers current local congestion control rate. During "slow start", when the receiver has
detected no loss, this value is set to twice the actual rate it has measured from the corresponding sender and the
NORM_FLAG_CC_START is set in the "cc_flags’ field. Otherwise, the receiver calculates a congestion control rate based on its
loss measurement and RTT measurement information (even if default) for the "cc_rate" field. For NORM_CMD(REPAIR_ADV)
messages, the sender SHALL set the "cc_loss" field value to the lowest non-CLR/non-PLR "cc_rate" report it has received from
receivers for the current feedback round.

The "cc_reserved" field is reserved for future NORM protocol use. Currently, senders SHALL set this field to ZERO, and
receivers SHALL ignore the content of this field.

The "repair_adv_payload" is in exactly the same form as the "nack_content" of NORM_NACK messages and can be processed by
receivers for suppression purposes in the same manner, with the exception of the condition when the
NORM_REPAIR_ADV_FLAG_LIMIT is set.

NORM_CMD(ACK_REQ) Message

The NORM_CMD(ACK_REQ) message is used by the sender to request acknowledgement from a specified list of receivers. This
message is used in providing a lightweight positive acknowledgement mechanism that is OPTIONAL for use by the reliable mul-
ticast application. A range of acknowledgement request types is provided for use at the application’s discretion. Provision for
application-defined, positively-acknowledged commands allows the application to automatically take advantage of transmission
and round-trip timing information available to the NORM protocol. The details of the NORM positive acknowledgement process
including transmission of the NORM_CMD(ACK_REQ) messages and the receiver response (NORM_ACK) are described in Sec-
tion 5.5.3. The format of the NORM_CMD(ACK_REQ) message is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 6 | reserved | ack_type | ack_id |
+-+
| acking_node_list |
| ... |
+-+

NORM_CMD(ACK_REQ) Message Format

The NORM common message header and standard NORM_CMD fields serve their usual purposes. The value of the "hdr_len"
field for NORM_CMD(ACK_REQ) messages with no header extension present is 4.

Adamson, Bormann, et al. Expires May 2004 [Page 24]

Internet Draft NORM Protocol November 2003

The "ack_type" field indicates the type of acknowledgement being requested and thus implies rules for how the receiver will treat
this request. The following "ack_type" values are defined and are also used in NORM_ACK messages described later:

ACK Type Value Purpose

NORM_ACK_CC 1 Used to identify NORM_ACK messages sent in response to
NORM_CMD(CC) messages.

NORM_ACK_FLUSH 2 Used to identify NORM_ACK messages sent in response to
NORM_CMD(FLUSH) messages.

NORM_ACK_RESERVED 3-15 Reserved for possible future NORM protocol use.

NORM_ACK_APPLICATION 16-255 Used at application’s discretion.

The NORM_ACK_CC value is provided for use only in NORM_ACKs generated in response to the NORM_CMD(CC) messages
used in congestion control operation. Similarly, the NORM_ACK_FLUSH is provided for use only in NORM_ACKs generated in
response to applicable NORM_CMD(FLUSH) messages. NORM_CMD(ACK_REQ) messages with "ack_type" of NORM_ACK_CC
or NORM_ACK_FLUSH SHALL NOT be generated by the sender.

The NORM_ACK_RESERVED range of "ack_type" values is provided for possible future NORM protocol use.

The NORM_ACK_APPLICATION range of "ack_type" values is provided so that NORM applications may implement applica-
tion-defined, positively-acknowledged commands that are able to leverage internal transmission and round-trip timing informa-
tion available to the NORM protocol implementation.

The "ack_id" provides a sequenced identifier for the given NORM_CMD(ACK_REQ) message. This "ack_id" is returned in
NORM_ACK messages generated by the receivers so that the sender may associate the response with its corresponding request.

The "reserved" field is reserved for possible future protocol use and SHALL be set to ZERO by senders and ignored by receivers.

The "acking_node_list" field contains the NormNodeIds of the current NORM receivers that are desired to provide positive
acknowledge (NORM_ACK) to this request. The packet payload length implies the length of the "acking_node_list" and its length
is limited to the sender NormSegmentSize. The individual NormNodeId items are listed in network (Big Endian) byte order. If a
receiver’s NormNodeId is included in the "acking_node_list", it SHALL schedule transmission of a NORM_ACK message as
described in Section 5.5.3.

NORM_CMD(APPLICATION) Message

This command allows the NORM application to robustly transmit application-defined commands. The command message pre-
empts any ongoing data transmission and is repeated up to NORM_ROBUST_FACTOR times at a rate of once per 2*GRTT. This
rate of repetition allows the application to observe any response (if that is the application’s purpose for the command) before it is
repeated. Possible responses may include initiation of data transmission , other NORM_CMD(APPLICATION) messages, or
ev en application-defined, positively-acknowledge commands from other NormSession participants. The transmission of these
commands will preempt data transmission when they are scheduled and may be multiplexed with ongoing data transmission.
This type of robustly transmitted command allows NORM applications to define a complete set of session control mechanisms
with less state than the transfer of FEC encoded reliable content requires while taking advantage of NORM transmission and
round-trip timing information.

Adamson, Bormann, et al. Expires May 2004 [Page 25]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=3| hdr_len | sequence |
+-+
| source_id |
+-+
| instance_id | grtt |backoff| gsize |
+-+
| flavor = 7 | reserved |
+-+
| Application-Defined Content |
| ... |
+-+

NORM_CMD(APPLICATION) Message Format

The NORM common message header and NORM_CMD fields are interpreted as previously described. The value of the
NORM_CMD(APPLICATION) "hdr_len" field when no header extensions are present is 4.

The "Application-Defined Content" area contains information in a format at the discretion of the application. The size of this
payload SHALL be limited to a maximum of the sender’s NormSegmentSize setting.

4.3 Receiver Messages

The NORM message types generated by pariticipating receivers consist of NORM_NACK and NORM_ACK message types.
NORM_NACK messages are sent to request repair of missing data content from sender transmission and NORM_ACK messages are
generated in response to certain sender commands including NORM_CMD(CC) and NORM_CMD(ACK_REQ).

4.3.1 NORM_NACK Message

The principal purpose of NORM_NACK messages is for receivers to request repair of sender content via selective, neg ative
acknowledgement upon detection of incomplete data. NORM_NACK messages will be transmitted according to the rules of
NORM_NACK generation and suppression described in Section 5.3. NORM_NACK messages also contain additional fields to pro-
vide feedback to the sender(s) for purposes of round-trip timing collection and congestion control.

The payload of NORM_NACK messages contains one or more repair requests for different objects or portions of those objects.
The NORM_NACK message format is as follows:

Adamson, Bormann, et al. Expires May 2004 [Page 26]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=4| hdr_len | sequence |
+-+
| source_id |
+-+
| server_id |
+-+
| instance_id | reserved |
+-+
| grtt_response_sec |
+-+
| grtt_response_usec |
+-+
| header extensions (if applicable) |
| ... |
+-+
| nack_payload |
| ... |
+-+

NORM_NACK Message Format

The NORM common message header fields serve their usual purposes. The value of the "hdr_len" field for NORM_NACK mes-
sages without header extensions present is 6.

The "server_id" field identifies the NORM sender to which the NORM_NACK message is destined.

The "instance_id" field contains the current session identifier given by the sender identified by the "server_id" field in its sender
messages. The sender SHOULD ignore feedback messages which contain an invalid "instance_id" value.

The "grtt_response" fields contain an adjusted version of the timestamp from the most recently received NORM_CMD(CC) mes-
sage for the indicated NORM sender. The format of the "grtt_response" is the same as the "send_time" field of the
NORM_CMD(CC). The "grtt_response" value is _relative_ to the "send_time" the source provided with a corresponding
NORM_CMD(CC) command. The receiver adjusts the source’s NORM_CMD(CC) "send_time" timestamp by adding the time dif-
ferential from when the receiver received the NORM_CMD(CC) to when the NORM_NACK is transmitted to calculate the value in
the "grtt_response" field. This is the "receive_to_response_differential" value used in the following formula:

"grtt_response" = NORM_CMD(CC) "send_time" + receive_to_response_differential

The receiver SHALL set the "grtt_response" to a ZERO value, to indicate that it has not yet received a NORM_CMD(CC) mes-
sage from the indicated sender and that the sender should ignore the "grtt_response" in this message.

For NORM-CC operation, the NORM-CC Feedback Header Extension, as described in the NORM_CMD(REPAIR_ADV} mes-
sage description, is added to NORM_NACK messages to provide feedback on the receivers current state with respect to congestion
control operation. Note that alternative header extensions for congestion control feedback may be defined for alternative conges-
tion control schemes for NORM use in the future.

The "reserved" field is for potential future NORM use and SHALL be set to ZERO for this version of the protocol.

The "nack_content" of the NORM_NACK message specifies the repair needs of the receiver with respect to the NORM sender
indicated by the "server_id" field. The receiver constructs repair requests based on the NORM_DATA and/or NORM_INFO seg-
ments it requires from the sender in order to complete reliable reception up to the sender’s transmission position at the moment

Adamson, Bormann, et al. Expires May 2004 [Page 27]

Internet Draft NORM Protocol November 2003

the receiver initiates the NACK Procedure as described in Section 5.3. A single NORM Repair Request consists of a list of
items, ranges, and/or FEC coding block erasure counts for needed NORM_DATA and/or NORM_INFO content. Multiple repair
requests may be concatenated within the "nack_payload" field of a NORM_NACK message. Note that a single NORM Repair
Request can possibly include multiple "items", "ranges", or "erasure_counts". In turn, the "nack_payload" field may contain
multiple repair requests. A single NORM Repair Request has the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| form | flags | length |
+-+
| repair_request_items |
| ... |
+-+

NORM Repair Request Format

The "form" field indicates the type of repair request items given in the "repair_request_items" list. Possible values for the "form"
field include:

Form Value
NORM_NACK_ITEMS 1
NORM_NACK_RANGES 2
NORM_NACK_ERASURES 3

A "form" value of NORM_NACK_ITEMS indicates each repair request item in the "repair_request_items" list is to be treated as
an individual request. A value of NORM_NACK_RANGES indicates that the "repair_request_items" list consists of pairs of repair
request items that correspond to inclusive ranges of repair needs. And the NORM_NACK_ERASURES "form" indicates that the
repair request items are to be treated individually and that the "encoding_symbol_id" portion of the "fec_payload_id" field of the
repair request item (see below) is to be interpreted as an "erasure count" for the FEC coding block identified by the repair request
item’s "source_block_number".

The "flags" field is currently used to indicate the level of data content for which the repair request items apply (i.e., an individual
segment, entire FEC coding block, or entire transport object). Possible flag values include:

Flag Value Purpose

NORM_NACK_SEGMENT 0x01 Indicates the listed segment(s) or range of segments are required as
repair.

NORM_NACK_BLOCK 0x02 Indicates the listed block(s) or range of blocks in entirety are required
as repair.

NORM_NACK_INFO 0x04 Indicates that NORM_INFO is required as repair for the listed object(s).

NORM_NACK_OBJECT 0x08 Indicates the listed object(s) or range of objects in entirety are required
as repair.

When the NORM_NACK_SEGMENT flag is set, the "object_transport_id" and "fec_payload_id" fields are used to determine which
sets or ranges of individual NORM_DATA segments are needed to repair content at the receiver. When the NORM_NACK_BLOCK
flag is set, this indicates the receiver is completely missing the indicated coding block(s) and requires transmissions sufficient to
repair the indicated block(s) in their entirety. When the NORM_NACK_INFO flag is set, this indicates the receiver is missing the
NORM_INFO segment for the indicated "object_transport_id". Note the NORM_NACK_INFO may be set in combination with the
NORM_NACK_BLOCK or NORM_NACK_SEGMENT flags, or may be set alone. When the NORM_NACK_OBJECT flag is set, this
indicates the receiver is missing the entire NormTransportObject referenced by the "object_transport_id". This also implicitly
requests any available NORM_INFO for the NormObject, if applicable. The "fec_payload_id" field is ignored when the flag

Adamson, Bormann, et al. Expires May 2004 [Page 28]

Internet Draft NORM Protocol November 2003

NORM_NACK_OBJECT is set.

The "length" field value is the length in bytes of the "repair_request_items" field.

The "repair_request_items" field consists of a list of individual or range pairs of transport data unit identifiers in the following
format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| fec_id | reserved | object_transport_id |
+-+
| fec_payload_id |
| ... |
+-+

NORM Repair Request Item Format

The "fec_id" indicates the FEC type and can be used to determine the format of the "fec_payload_id" field. The "reserved" field
is kept for possible future use and SHALL be set to a ZERO value and ignored by NORM nodes processing NACK content.

The "object_transport_id" corresponds to the NormObject for which repair is being requested and the "fec_payload_id" identifies
the specific FEC coding block and/or segment being requested. When the NORM_NACK_OBJECT flag is set, the value of the
"fec_payload_id" field is ignored. When the NORM_NACK_BLOCK flag is set, only the FEC code block identifier portion of the
"fec_payload_id" is to be interpreted.

The format of the "fec_payload_id" field depends upon the "fec_id" field value.

When the receiver’s repair needs dictate that different forms (mixed ranges and/or individual items) or types (mixed specific seg-
ments and/or blocks or objects in entirety) are required to complete reliable transmission, multiple NORM Repair Requests with
different "form" and or "flags" values can be concatenated within a single NORM_NACK message. Additionally, NORM receivers
SHALL construct NORM_NACK messages with their repair requests in ordinal order with respect to "object_transport_id" and
"fec_payload_id" values. The "nack_payload" size SHALL NOT exceed the NormSegmentSize for the sender to which the
NORM_NACK is destined.

NORM_NACK Content Examples:

In these examples, a small block, systematic FEC code ("fec_id" = 129) is assumed with a user data block length of 32 segments.
In Example 1, a list of individual NORM_NACK_ITEMS repair requests is given. In Example 2, a list of NORM_NACK_RANGES
requests _and_ a single NORM_NACK_ITEMS request are concatenated to illustrate the possible content of a NORM_NACK mes-
sage. Note that FEC coding block erasure counts could also be provided in each case. However, the erasure counts are not really
necessary since the sender can easily determine the erasure count while processing the NACK content. However, the erasure
count option may be useful for operation with other FEC codes or for intermediate system purposes.

Adamson, Bormann, et al. Expires May 2004 [Page 29]

Internet Draft NORM Protocol November 2003

Example 1: NORM_NACK "nack_payload" for: Object 12, Coding Block 3, Segments 2,5,8
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| form = 1 | flags = 0x01 | length = 36 |
+-+
| fec_id = 129 | reserved | object_transport_id = 12 |
+-+
| source_block_number = 3 |
+-+
| source_block_length = 32 | encoding_symbol_id = 2 |
+-+
| fec_id = 129 | reserved | object_transport_id = 12 |
+-+
| source_block_number = 3 |
+-+
| source_block_length = 32 | encoding_symbol_id = 5 |
+-+
| fec_id = 129 | reserved | object_transport_id = 12 |
+-+
| source_block_number = 3 |
+-+
| source_block_length = 32 | encoding_symbol_id = 8 |
+-+

Example 2: NORM_NACK "nack_payload" for: Object 18 Coding Block 6, Segments 5, 6, 7, 8, 9, 10; and Object 19
NORM_INFO and Coding Block 1, segment 3
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| form = 2 | flags = 0x01 | length = 24 |
+-+
| fec_id = 129 | reserved | object_transport_id = 18 |
+-+
| source_block_number = 6 |
+-+
| source_block_length = 32 | encoding_symbol_id = 5 |
+-+
| fec_id = 129 | reserved | object_transport_id = 18 |
+-+
| source_block_number = 6 |
+-+
| source_block_length = 32 | encoding_symbol_id = 10 |
+-+
| form = 1 | flags = 0x05 | length = 12 |
+-+
| fec_id = 129 | reserved | object_transport_id = 19 |
+-+
| source_block_number = 1 |
+-+
| source_block_length = 32 | encoding_symbol_id = 3 |
+-+

Adamson, Bormann, et al. Expires May 2004 [Page 30]

Internet Draft NORM Protocol November 2003

4.3.2 NORM_ACK Message

The NORM_ACK message is intended to be used primarily as part of NORM congestion control operation and round-trip timing
measurement. As mentioned in the NORM_CMD(ACK_REQ) message description, the acknowledgement type NORM_ACK_CC
is provided for this purpose. The generation of NORM_ACK(CC) messages for round-trip timing estimation and congestion-con-
trol operation is described in Sections 5.5.1 and 5.5.2, respectively. Howev er, some multicast applications may benefit from
some limited form of positive acknowledgement for certain functions. A simple, scalable positive acknowledgement scheme is
defined in Section 5.5.3 that can be leveraged by protocol implementations when appropriate. The NORM_CMD(FLUSH) may
be used for OPTIONAL collection of positive acknowledgement of reliable reception to a certain "watermark" transmission point
from specific receivers using this mechanism. The NORM_ACK type NORM_ACK_FLUSH is provided for this purpose and the
format of the "nack_payload" for this acknowledgement type is given below. Beyond that, a range of application-defined
"ack_type" values is provided for use at the NORM application’s discretion. Implementations making use of application-defined
positive acknowledgements may also make use the "nack_payload" as needed, observing the constraint that the "nack_payload"
field size be limited to a maximum of theNormSegmentSize for the sender to which the NORM_ACK is destined.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|version| type=5| hdr_len | sequence |
+-+
| source_id |
+-+
| server_id |
+-+
| instance_id | ack_type | ack_id |
+-+
| grtt_response_sec |
+-+
| grtt_response_usec |
+-+
| header extensions (if applicable) |
| ... |
+-+
| ack_payload (if applicable) |
| ... |
+-+

NORM_ACK Message Format

The NORM common message header fields serve their usual purposes.

The "server_id", "instance_id", and "grtt_response" fields serve the same purpose as the corresponding fields in NORM_NACK
messages. And header extensions may be applied to support congestion control feedback or other functions in the same manner.

The "ack_type" field indicates the nature of the NORM_ACK message. This directly corresponds to the "ack_type" field of the
NORM_CMD(ACK_REQ) message to which this acknowledgement applies.

The "ack_id" field serves as a sequence number so that the sender can verify that a NORM_ACK message received actually applies
to a current acknowledgement request. The "ack_id" field is not used in the case of the NORM_ACK_CC and
NORM_ACK_FLUSH acknowledgement types.

The "ack_payload" format is a function of the "ack_type". The NORM_ACK_CC message has no attached content. Only the
NORM_ACK header applies. In the case of NORM_ACK_FLUSH, a specific "ack_payload" format is defined:

Adamson, Bormann, et al. Expires May 2004 [Page 31]

Internet Draft NORM Protocol November 2003

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| fec_id | reserved | object_transport_id |
+-+
| fec_payload_id |
| ... |
+-+

NORM_ACK_FLUSH "ack_payload" Format

The "object_transport_id" and "fec_payload_id" are used by the receiver to acknowledge applicable NORM_CMD(FLUSH) mes-
sages transmitted by the sender identified by the "server_id" field.

The "ack_payload" of NORM_ACK messages for application-defined "ack_type" values is specific to the application but is limited
in size to a maximum the NormSegmentSize of the sender referenced by the "server_id".

4.4 General Messages

4.4.1 NORM_REPORT

This is an optional message generated by NORM participants. This message could be used for periodic performance reports
from receivers in experimental NORM implementations. The format of this message is currently undefined. Experimental
NORM implementations may define NORM_REPORT formats as needed for test purposes. These report messages SHOULD be
disabled for interoperability testing between different NORM implementations.

5.0 Functionality Definition

This section describes the detailed interactions of senders and receivers participating in a NORM session. A simple synopsis of
protocol operation is given in the following:

1) The sender periodically transmits NORM_CMD(CC) messages as needed to initialize and collect roundtrip
timing and congestion control feedback from the receiver set.

2) The sender transmits an ordinal set of NormObjects segmented in the form of NORM_DATA messages
labeled with NormTransportIds and logically identified with FEC encoding block numbers and symbol
identifiers. NORM_INFO messages may optionally precede the transmission of data content for NORM
transport objects.

3) As receivers detect missing content from the sender, they initiate repair requests with NORM_NACK mes-
sages. Note the receivers track the sender’s most recent objectId::fecPayloadId transmit position and
NACK _only_ for content ordinally prior to that transmit position. The receivers schedule random backoff
timeouts before generating NORM_NACK messages and wait an appropriate amount of time before repeating
the NORM_NACK if their repair request is not satisified.

Adamson, Bormann, et al. Expires May 2004 [Page 32]

Internet Draft NORM Protocol November 2003

4) The sender aggregates repair requests from the receivers and logically "rewinds" its transmit position to
send appropriate repair messages. The sender sends repairs for the earliest ordinal transmit position first
and maintains this ordinal repair transmission sequence. Previously untransmitted FEC parity content for
the applicable FEC coding block is used for repair transmissions to the greatest extent possible. If the
sender exhausts its available FEC parity content on multiple repair cycles for the same coding block, it
resorts to an explicit repair strategy (possibly using parity content) to complete repairs. (The use of explicit
repair is expected to be an exception in general protocol operation, but the possibility does exist for extreme
conditions). The sender immediately assumes transmission of new content once it has sent pending repairs.

5) The sender transmits NORM_CMD(FLUSH) messages when it reaches the end of enqueued transmit content
and pending repairs. Receivers respond to the NORM_CMD(FLUSH) messages with NORM_NACK trans-
missions (following the same suppression backoff timeout strategy as for data) if they require further repair.

6) The sender transmissions are subject to rate control limits determined by congestion control mechanisms.
In the baseline NORM-CC operation, each sender in a NormSession maintains its own independent conges-
tion control state. Receivers provide congestion control feedback in NORM_NACK and NORM_ACK mes-
sages. NORM_ACK feedback for congestion control purposes is governed using a suppression mechanism
similar to that for NORM_NACK messages.

While this overall concept is relatively simple, there are details to each of these aspects that need to be addressed for successful,
efficient, robust, and scalable NORM protocol operation.

5.1 NORM Sender Initialization and Transmission

Upon startup, the NORM sender immediately begins sending NORM_CMD(CC) messages to collect round trip timing and other
information from the potential group. If NORM-CC congestion control operation is enabled, the NORM-CC Rate header exten-
sion MUST be included in these messages. Congestion control operation SHALL be observed at all times when operating in the
general Internet. Even if congestion control operation is disabled at the sender, it may be desirable to use the NORM_CMD(CC)
messaging to collect feedback from the group using the baseline NORM-CC feedback mechanisms. This proactive feedback col-
lection can be used to establish a GRTT estimate prior to data transmission and potential NACK operation.

In some cases, applications may wish for the sender to also proceed with data transmission immediately. In other cases, the
sender may wish to defer data transmission until it has received some feedback or request from the receiver set indicating that
receivers are indeed present. Note, in some applications (e.g., web push), this indication may come out-of-band with respect to
the multicast session via other means. As noted, the periodic transmission of NORM_CMD(CC) messages may precede actual
data transmission in order to have an initial GRTT estimate.

With inclusion of the OPTIONAL NORM FEC Object Transmission Information Header Extension, the NORM protocol sender
message headers can contain all information necessary to prepare receivers for subsequent reliable reception. This includes FEC
coding parameters, the sender NormSegmentSize, and other information. If this header extension is not used, it is presumed that
receivers have received the FEC Object Transmission Information via other means. Additionally, applications may leverage the
use of NORM_INFO messages associated with the session data objects in the session to provide application-specific context infor-
mation for the session and data being transmitted. These mechanisms allow for operation with minimal pre-coordination among
the senders and receivers.

The NORM sender begins segmenting application-enqueued data into NORM_DATA segments and transmitting it to the group.
The segmentation algorithm is described in Section 5.1.1. The rate of transmission is controlled via congestion control mecha-
nisms or is a fixed rate if desired for closed network operations. The receivers participating in the multicast group provide feed-
back to the sender as needed. When the sender reaches the end of data it has enqueued for transmission or any pending repairs, it
transmits a series of NORM_CMD(FLUSH) messages at a rate of one per 2*GRTT. Receivers may respond to these
NORM_CMD(FLUSH) messages with additional repair requests. A protocol parameter "NORM_ROBUST_FACTOR" determines
the number of flush messages sent. If receivers request repair, the repair is provided and flushing occurs again at the end of
repair transmission. The sender may attach an OPTIONAL "acking_node_list" to NORM_CMD(FLUSH) containing the

Adamson, Bormann, et al. Expires May 2004 [Page 33]

Internet Draft NORM Protocol November 2003

NormNodeIds for receivers from which it expects explicit positive acknowledgement of reception. The NORM_CMD(FLUSH)
message may be also used for this optional function any time prior to the end of data enqueued for transmission with the
NORM_CMD(FLUSH) messages multiplexed with ongoing data transmissions. The OPTIONAL NORM positive acknowledge-
ment procedure is described in Section 5.5.3.

5.1.1 NORM Transport Object Segmentation Algorithm

NORM senders and receivers must use a common algorithm for logically segmenting transport data into FEC encoding blocks
and symbols so that appropriate NACKs can be constructed to request repair of missing data. NORM FEC coding blocks are
comprised of multi-byte symbols which are transmitted in the payload of NORM_DATA messages. Each NORM_DATA message
contains one source or encoding symbol and the NormSegmentSize sender parameter defines the maximum symbol size in bytes.
The FEC encoding type and associated parameters govern the source block size (number of source symbols per coding block).
NORM senders and receivers use these FEC parameters, along with the NormSegmentSize and transport object size to compute
the source block structure for transport objects. These parameters are provided in the FEC Transmission Information for each
object. The algorithm given below is used to compute a source block structure such that all source blocks are as close to being
equal length as possible. This helps avoid the performance disadvantages of "short" FEC blocks. Note this algorithm applies
only to the statically-sized NORM_OBJECT_DATA and NORM_OBJECT_FILE transport object types where the object size is
fixed and predetermined. For NORM_OBJECT_STREAM objects, the object is segmented according to the maximum source
block length given in the FEC Transmission Information, unless the FEC Payload ID indicates an alternative size for a given
block.

The NORM block segmentation algorithm is defined here:

For a transport object of a given length (L_obj) in bytes , a first number of FEC source blocks (N_large) is delineated of a
larger block size (B_large), and a second number of source blocks (N_small) is delineated of a smaller block size
(B_small). Given the maximum FEC source block size (B_max) and the sender’s NormSegmentSize, the block segmentation
for a given NORM transport object is determined as follows:

Inputs:

B_max = Maximum source block length (i.e., maximum number of source symbols per source block)

L_sym = Encoding symbol length in bytes (i.e., NormSegmentSize)

L_obj = Object length in bytes

Outputs:

N_total = The total number of source blocks into which the transport object is partitioned.

N_large = Number of larger source blocks (first set of blocks)

B_large = Size (in encoding symbols) of the larger source blocks

N_small = Number of smaller source blocks (second set of blocks)

B_small = Size (in encoding symbols) of the smaller source blocks

L_final = Length (in bytes) of the last source symbol of the last source block (All other symbols are of length
L_sym).

Adamson, Bormann, et al. Expires May 2004 [Page 34]

Internet Draft NORM Protocol November 2003

Algorithm:

1) The total number of source symbols in the transport object is computed as:
S_total = L_obj/L_sym [rounded up to the nearest integer]

2) The transport object is partitioned into N_total source blocks, where:
N_total = S_total/B_max [rounded up to the nearest integer]

3) The av erage length of a source block is computed as:
B_ave = S_total/N_total (this may be non-integer)

4) The size of the first set of larger blocks is computed as:
B_large = B_ave [rounded up to the nearest integer]
(Note it will always be the case that B_large <= B_max)

5) The size of the second set of smaller blocks is computed as:
B_small = B_ave [rounded down to the nearest integer]
(Note if B_ave is an integer B_small = B_large; otherwise B_small = B_large - 1)

6) The fractional part of B_ave is computed as:
B_fraction = B_ave - B_small

7) The number of larger source blocks is computed as:
N_large = B_fraction * N_total
(Note N_large is an integer in the range 0 through N_total - 1)

8) The number of smaller source blocks is computed as:
N_small = N_total - N_large

9) Each of the first N_large source blocks consists of B_large source symbols. Each of the remaining
N_small source blocks consists of B_small source symbols. All symbols are L_sym bytes in length
except for the final source symbol of the final source block which is of length (in bytes):
L_final = L_obj - (N_large*B_large + N_small*B_small - 1) * L_sym

5.2 NORM Receiver Initialization and Reception

The NORM protocol is designed such that receivers may join and leave the group at will. However, some applications may be
constrained such that receivers need to be members of the group prior to start of data transmission. NORM applications may use
different policies to constrain the impact of new receivers joining the group in the middle of a session. For example, a useful
implementation policy is for new receivers joining the group to limit or avoid repair requests for transport objects already in
progress. The NORM sender implementation may wish to impose additional constraints to limit the ability of receivers to dis-
rupt reliable multicast performance by joining, leaving, and rejoining the group often. Different receiver "join policies" may be
appropriate for different applications and/or scenarios. For general purpose operation, default policy where receivers are allowed
to request repair only for coding blocks with a NormTransportId and FEC coding block number greater than or equal to the first
non-repair NORM_DATA or NORM_INFO message received upon joining the group is RECOMMENDED. For objects of type
NORM_OBJECT_STREAM it is RECOMMENDED that the join policy constrain receivers to start reliable reception at the cur-
rent FEC coding block for which non-repair content is received.

5.3 NORM Receiver NACK Procedure

When the receiver detects it is missing data from a sender’s NORM transmissions, it initiates its NACKing procedure. The
NACKing procedure SHALL be initiated _only_ at FEC coding block boundaries, NormObject boundaries, and upon receipt of a

Adamson, Bormann, et al. Expires May 2004 [Page 35]

Internet Draft NORM Protocol November 2003

NORM_CMD(FLUSH) message.

The NACKing procedure begins with a random backoff timeout. The duration of the backoff timeout is chosen using the "Ran-
domBackoff" algorithm described in the NORM Building Block document [14] using (Ksender*GRTTsender) for the "max-
Time" parameter and the sender advertised group size (GSIZEsender) as the "groupSize" parameter. NORM senders provide
values for GRTTsender, Ksender and GSIZEsender via the "grtt", "backoff", and "gsize" fields of transmitted messages.
The GRTTsender value is determined by the sender based on feedback it has received from the group while the Ksender and
GSIZEsender values may determined by application requirements and expectations or ancillary information. The backoff fac-
tor "Ksender" MUST be greater than one to provide for effective feedback suppression. A value of K = 4 is RECOM-
MENDED for the Any Source Multicast (ASM) model while a value of K = 6 is RECOMMENDED for Single Source Multi-
cast (SSM) operation.

Thus:

T_backoff = RandomBackoff(Ksender*GRTTsender, GSIZEsender)

To avoid the possibility of NACK implosion in the case of sender or network failure during SSM operation, the receiver SHALL
automatically suppress its NACK and immediately enter the "holdoff" period described below when T_backoff is greater than
(Ksender-1)*GRTTsender. Otherwise, the backoff period is entered and the receiver MUST accumulate external pending
repair state from NORM_NACK messages and NORM_CMD(REPAIR_ADV) messages received. At the end of the backoff time,
the receiver SHALL generate a NORM_NACK message only if the following conditions are met:

1) The sender’s current transmit position (in terms of objectId::fecPayloadId) exceeds the earliest repair posi-
tion of the receiver.

2) The repair state accumulated from NORM_NACK and NORM_CMD(REPAIR_ADV) messages do not equal
or supersede the receiver’s repair needs up to the sender transmission position at the time the NACK proce-
dure (backoff timeout) was initiated.

If these conditions are met, the receiver immediately generates a NORM_NACK message when the backoff timeout expires. Oth-
erwise, the receiver’s NACK is considered to be "suppressed" and the message is not sent. At this time, the receiver begins a
"holdoff" period during which it constrains itself to not reinitiate the NACKing process. The purpose of this timeout is to allow
the sender worst-case time to respond to the repair needs before the receiver requests repair again. The value of this "holdoff"
timeout (T_rcvrHoldoff) as described in [14] is:

T_rcvrHoldoff =(Ksender+2)*GRTTsender

The NORM_NACK message contains repair request content beginning with lowest ordinal repair position of the receiver up
through the coding block prior to the most recently heard ordinal transmission position for the sender. If the size of the
NORM_NACK content exceeds the sender’s NormSegmentSize, the NACK content is truncated so that the receiver only generates a
single NORM_NACK message per NACK cycle for a given sender. In summary, a single NACK message is generated containing
the receiver’s lowest ordinal repair needs.

For each partially-received FEC coding block requiring repair, the receiver SHALL, on its _first_ repair attempt for the block,
request the parity portion of the FEC coding block beginning with the lowest ordinal _parity_ "encoding_symbol_id" (i.e.
"encoding_symbol_id" = "source_block_len") and request the number of FEC symbols corresponding to its data segment erasure
count for the block. On _subsequent_ repair cycles for the same coding block, the receiver SHALL request only those repair
symbols from the first set it has not yet received up to the remaining erasure count for that applicable coding block. Note that the
sender may have provided other different, additional parity segments for other receivers that could also be used to satisfy the
local receiver’s erasure-filling needs. In the case where the erasure count for a partially-received FEC coding block exceeds the
maximum number of parity symbols available from the sender for the block (as indicated by the NORM_DATA "fec_num_parity"
field), the receiver SHALL request all available parity segments plus the ordinally highest missing data segments required to sat-
isfy its total erasure needs for the block. The goal of this strategy is for the overall receiver set to request a lowest common

Adamson, Bormann, et al. Expires May 2004 [Page 36]

Internet Draft NORM Protocol November 2003

denominator set of repair symbols for a given FEC coding block. This allows the sender to construct the most efficient repair
transmission segment set and enables effective NACK suppression among the receivers even with uncorrelated packet loss. This
approach also requires no synchronization among the receiver set in their repair requests for the sender.

For FEC coding blocks or NormObjects missed in their entirety, the NORM receiver constructs repair requests with
NORM_NACK_BLOCK or NORM_NACK_OBJECT flags set as appropriate. The request for retransmission of NORM_INFO is
accomplished by setting the NORM_NACK_INFO flag in a corresponding repair request.

5.4 NORM Sender NACK Processing and Repair Transmission

The principle goal of the sender is to make forward progress in the transmission of data its application has enqueued. However,
the sender must occasionally "rewind" its logical transmission point to satisfy the repair needs of receivers who have NACKed.
Aggregation of multiple NACKs is used to determine an optimal repair strategy when a NACK event occurs. Since receivers ini-
tiate the NACK process on coding block or object boundaries, there is some loose degree of synchronization of the repair process
ev en when receivers experience uncorrelated data loss.

5.4.1 NORM Sender Repair State Aggregation

When a sender is in its normal state of transmitting new data and receives a NACK, it begins a procedure to accumulate NACK
repair state from NORM_NACK messages before beginning repair transmissions. Note that this period of aggregating repair state
does _not_ interfere with its ongoing transmission of new data.

As described in [14], the period of time during which the sender aggregates NORM_NACK messages is equal to:

T_sndrAggregate = (Ksender+1)*GRTT

where "Ksender" is the same backoff scaling value used by the receivers, and "GRTT" is the sender’s current estimate of the
group’s greatest round-trip time.

When this period ends, the sender "rewinds" by incorporating the accumulated repair state into its pending transmission state and
begins transmitting repair messages. After pending repair transmissions are completed, the sender continues with new transmis-
sions of any enqueued data. Also, at this point in time, the sender begins a "holdoff" timeout during which time the sender con-
strains itself from initiating a new repair aggregation cycle, even if NORM_NACK messages arrive. As described in [14], the value
of this sender "holdoff" period is:

T_sndrHoldoff = (1*GRTT)

If additional NORM_NACK messages are received during this sender "holdoff" period, the sender will immediately incorporate
these "late messages" into its pending transmission state ONLY if the NACK content is ordinally greater than the sender’s current
transmission position. This "holdoff" time allows worst case time for the sender to propagate its current transmission sequence
position to the group, thus avoiding redundant repair transmissions. After the holdoff timeout expires, a new NACK accumula-
tion period can be begun (upon arrival of a NACK) in concert with the pending repair and new data transmission. Recall that
receivers are not to initiate the NACK repair process until the sender’s logical transmission position exceeds the lowest ordinal
position of their repair needs. With the new NACK aggregation period, the sender repeats the same process of incorporating
accumulated repair state into its transmission plan and subsequently "rewinding" to transmit the lowest ordinal repair data when
the aggregation period expires. Again, this is conducted in concert with ongoing new data and/or pending repair transmissions.

5.4.2 NORM Sender FEC Repair Transmission Strategy

The NORM sender should leverage transmission of FEC parity content for repair to the greatest extent possible. Recall that the
receivers use a strategy to request a lowest common denominator of explicit repair (including parity content) in the formation of

Adamson, Bormann, et al. Expires May 2004 [Page 37]

Internet Draft NORM Protocol November 2003

their NORM_NACK messages. Before falling back to explicitly satisfying different receivers’ repair needs, the sender can make
use of the general erasure-filling capability of FEC-generated parity segments. The sender can determine the maximum erasure
filling needs for individual FEC coding blocks from the NORM_NACK messages received during the repair aggregation period.
Then, if the sender has a sufficient number (less than or equal to the maximum erasure count) of previously unsent parity seg-
ments available for the applicable coding blocks, the sender can transmit these in lieu of the specific packets the receiver set has
requested. Only after exhausting its supply of "fresh" (unsent) parity segments for a given coding block should the sender resort
to explicit transmission of the receiver set’s repair needs. In general, if a sufficiently powerful FEC code is used, the need for
explicit repair will be an exception, and the fulfillment of reliable multicast can be accomplished quite efficiently. Howev er, the
ability to resort to explicit repair allows the protocol to be reliable under even very extreme circumstances.

NORM_DATA messages sent as repair transmissions SHALL be flagged with the NORM_FLAG_REPAIR flag. This allows
receivers to obey any policies that limit new receivers from joining the reliable transmission when only repair transmissions have
been received. Additionally, the sender SHOULD additionally flag NORM_DATA transmissions sent as explicit repair with the
NORM_FLAG_EXPLICIT flag.

Although NORM end system receivers do not make use of the NORM_FLAG_EXPLICIT flag, this message transmission status
could be leveraged by intermediate systems wishing to "assist" NORM protocol performance. If such systems are properly posi-
tioned with respect to recriprocal reverse-path multicast routing, they need to subcast only a sufficient count of non-explicit par-
ity repairs to satisfy a multicast routing sub-tree’s erasure filling needs for a given FEC coding block. When the sender has
resorted to explicit repair, then the intermediate systems should subcast all of the explicit repair packets to those portions of the
routing tree still requiring repair for a given coding block. Note the intermediate systems will be required to conduct repair state
accumulation for sub-routes in a manner similar to the sender’s repair state accumulation in order to have sufficient information
to perform the subcasting. Additionally, the intermediate systems could perform additional NORM_NACK suppression/aggre-
gation as it conducts this repair state accumulation for NORM repair cycles. The detail of this type of operation are beyond the
scope of this document, but this information is provided for possible future consideration.

5.4.3 NORM Sender NORM_CMD(SQUELCH) Generation

If the sender receives a NORM_NACK message for repair of data it is no longer supporting, the sender generates a
NORM_CMD(SQUELCH) message to advertise its repair window and squelch any receivers from additional NACKing of invalid
data. The transmission rate of NORM_CMD(SQUELCH) messages is limited to once per 2*GRTT. The "invalid_object_list" (if
applicable) of the NORM_CMD(SQUELCH) message SHALL begin with the lowest "object_transport_id" from the invalid
NORM_NACK messages received since the last NORM_CMD(SQUELCH) transmission. Lower ordinal invalid "object_trans-
port_ids" should be included only while the NORM_CMD(SQUELCH) payload is less than the sender’s NormSegmentSize param-
eter.

5.4.4 NORM Sender NORM_CMD(REPAIR_ADV) Generation

When a NORM sender receives NORM_NACK messages from receivers via unicast transmission, it uses
NORM_CMD(REPAIR_ADV) messages to advertise its accumulated repair state to the receiver set since the receiver set is not
directly sharing their repair needs via multicast communication. The NORM_CMD(REPAIR_ADV) message is multicast to the
receiver set by the sender. The payload portion of this message has content in the same format as the NORM_NACK receiver mes-
sage payload. Receivers are then able to perform feedback suppression in the same manner as with NORM_NACK messages
directly received from other receivers. Note the sender does not merely retransmit NACK content it receives, but instead trans-
mits a representation of its aggregated repair state. The transmission of NORM_CMD(REPAIR_ADV) messages are subject to
the sender transmit rate limit and NormSegmentSize limitation. When the NORM_CMD(REPAIR_ADV) message is of maximum
size, receivers SHALL consider the maximum ordinal transmission position value embedded in the message as the senders "cur-
rent" transmission position and implicitly suppress requests for ordinally higher repair. For congestion control operation, the
sender may also need to provide information so that dynamic congestion control feedback can be suppressed as needed among
the receivers. This document specificies the NORM-CC Feedback Header Extension that is applied for baseline NORM-CC
operation. If other congestion control mechanisms are used within a NORM implementation, other header extensions may be
defined. Whatever content format is used for this purpose should ensure that maximum possible suppression state is conveyed to

Adamson, Bormann, et al. Expires May 2004 [Page 38]

Internet Draft NORM Protocol November 2003

the receiver set.

5.5 Additional NORM Protocol Mechanisms

In addition to the principal function of data content transmission and repair, there are some other protocol mechanisms that help
NORM to adapt to network conditions and play fairly with other coexistent protocols.

5.5.1 NORM Greatest Round-trip Time (GRTT) Collection

For NORM receivers to appropriately scale backoff timeouts and the senders to use proper corresponding timeouts, the partici-
pants must agree on a common timeout basis. Each NORM sender monitors the round-trip time of active receivers and deter-
mines the group greatest round-trip time (GRTT). The sender advertises this GRTT estimate in every message it transmits so that
receivers have this value available for scaling their timers. To measure the current GRTT, the sender periodically sends
NORM_CMD(CC) messages that contain a locally generated timestamp. Receivers are expected to record this timestamp along
with the time the NORM_CMD(CC) message is received. Then, when the receivers generate feedback messages to the sender, an
adjusted version of the sender timestamp is embedded in the feedback message (NORM_NACK or NORM_ACK). The adjustment
adds the amount of time the receiver held the timestamp before generating its response. Upon receipt of this adjusted timestamp,
the sender is able to calculate the round-trip time to that receiver.

The round-trip time for each receiver is fed into an algorithm that weights and smooths the values for a conservative estimate of
the GRTT. The algorithm and methodology are described in the NORM Building Block document [11] in the section entitled
"One-to-Many Sender GRTT Measurement". A conservative estimate helps feedback suppression at a small cost in overall pro-
tocol repair delay. The sender’s current estimate of GRTT is advertised in the "grtt" field found in all NORM sender messages.
The advertised GRTT is also limited to a minimum of the nominal inter-packet transmission time given the sender’s current
transmission rate and system clock granularity. The reason for this additional limit is to keep the receiver somewhat "event
driven" by making sure the sender has had adequate time to generate any response to repair requests from receivers given trans-
mit rate limitations due to congestion control or configuration.

When the NORM-CC Rate header extension is present in NORM_CMD(CC) messages, the receivers respond to NORM_CMD(CC)
messages as described in Section 5.5.2, "NORM Congestion Control Operation". The NORM_CMD(CC) messages are periodi-
cally generated by the sender as described for congestion control operation. This provides for proactive, but controlled, feedback
from the group in the form of NORM_ACK messages. This provides for GRTT feedback even if no NORM_NACK messages are
being sent. If operating without congestion control in a closed network, the NORM_CMD(CC) messages may be sent periodically
without the NORM-CC Rate header extension. In this case, receivers will only provide GRTT measurement feedback when
NORM_NACK messages are generated since no NORM_ACK messages are generatedR. In this case, the NORM_CMD(CC) mes-
sages may be sent less frequently, perhaps as little as once per minute, to conserve network capacity. Note that the NORM-CC
Rate header extension may also be used proactively solicit RTT feedback from the receiver group per congestion control opera-
tion even though the sender may not be conducting congestion control rate adjustment. NORM operation without congestion
control should be considered only in closed networks.

5.5.2 NORM Congestion Control Operation (NORM-CC)

This section describes baseline congestion control operation for the NORM protocol (NORM-CC). The supporting NORM mes-
sage formats and approach described here are an adaptation of the equation-based TCP-Friendly Multicast Congestion Control
(TFMCC) approach described in [17] and [20]. This congestion control scheme is REQUIRED for operation within the general
Internet unless the NORM implementation is adapted to use another IETF-sanctioned reliable multicast congestion control mech-
anism (e.g. PGMCC [21]). With this TFMCC-based approach, the transmissions of NORM senders are controlled in a rate-
based manner as opposed to window-based congestion control algorithms as in TCP. Howev er, it is possible that the NORM pro-
tocol message set may alternatively be used to support a window-based multicast congestion control scheme such as PGMCC.
The details of that alternative may be described separately or in a future revision of this document. In either case (rate-based
TFMCC or window-based PGMCC), successful control of sender transmission depends upon collection of sender-to-receiver

Adamson, Bormann, et al. Expires May 2004 [Page 39]

Internet Draft NORM Protocol November 2003

packet loss estimates and RTTs to identify the congestion control bottleneck path(s) within the multicast topology and adjust the
sender rate accordingly. The receiver with loss and RTT estimates that correspond to the lowest result transmission rate is identi-
fied as the "current limiting receiver" (CLR).

As described in [23], a steady-state sender transmission rate, to be "friendly" with competing TCP flows can be calculated as:

S
Rsender = ---

tRTT * (sqrt((2/3)*p) + 12 * sqrt((3/8)*p) * p * (1 + 32*(pˆ2)))

where

S = Nominal transmitted packet size. (In NORM, the "nominal" packet size can be determined by the sender as
an exponentially weighted moving average (EWMA) of transmitted packet sizes to account for variable
message sizes).

tRTT = The RTT estimate of the current "current limiting receiver" (CLR).

p = The loss event fraction of the CLR.

To support congestion control feedback collection and operation, the NORM sender periodically transmits NORM_CMD(CC)
command messages. NORM_CMD(CC) messages are multiplexed with NORM data and repair transmissions and serve sev eral
purposes:

1) Stimulate explicit feedback from the general receiver set to collect congestion control information.

2) Communicate state to the receiver set on the sender’s current congestion control status including details of
the CLR.

3) Initiate rapid (immediate) feedback from the CLR in order to closely track the dynamics of congestion con-
trol for that current "worst path" in the group multicast topology.

The format of the NORM_CMD(CC) message is describe in Section 4.2.3 of this document. The NORM_CMD(CC) message con-
tains information to allow measurement of RTTs, to inform the group of the congestion control CLR, and to provide feedback of
individual RTT measurements to the receivers in the group. The NORM_CMD(CC) also provides for exciting feedback from
OPTIONAL "potential limiting receiver" (PLR) nodes that may be determined administratively or possibly algorithmically based
on congestion control feedback. PLR nodes are receivers that have been identified to have potential for (perhaps soon) becoming
the CLR and thus immediate, up-to-date feedback is beneficial for congestion control performance. The details of PLR selection
are not discussed in this document.

5.5.2.1 NORM_CMD(CC) Transmission

The NORM_CMD(CC) message is transmitted periodically by the sender along with its normal data transmission. Note that the
repeated transmission of NORM_CMD(CC) messages may be initiated some time before transmission of user data content at ses-
sion startup. This may be done to collect some estimation of the current state of the multicast topology with respect to group and
individual RTT and congestion control state.

A NORM_CMD(CC) message is immediately transmitted at sender startup. The interval of subsequent NORM_CMD(CC) mes-
sage transmission is determined as follows:

Adamson, Bormann, et al. Expires May 2004 [Page 40]

Internet Draft NORM Protocol November 2003

1) By default, the interval is set according to the current sender GRTT estimate. A startup GRTT of 0.5 sec-
onds is recommended when no feedback has yet been received from the group.

2) If a CLR has been identified (based on previous receiver feedback), the interval is the RTT between the
sender and CLR.

3) Additionally, if the interval of nominal data message transmission is greater than the GRTT or RTT_clr
interval, the NORM_CMD(CC) interval is set to this greater value. This ensures that the transmission of this
control message is not done to the exclusion of user data transmission.

The NORM_CMD(CC) "cc_sequence" field is incremented with each transmission of a NORM_CMD(CC) command. The greatest
"cc_sequence" recently received by receivers is included in their feedback to the sender. This allows the sender to determine the
"age" of feedback to assist in congestion avoidance.

The NORM-CC Rate Header Extension is applied to the NORM_CMD(CC) message and the sender advertises its current trans-
mission rate in the "send_rate" field. The rate information is used by receivers to initialize loss estimation during congestion
control startup or restart.

The "cc_node_list" contains a list of entries identifying receivers and their current congestion control state (status "flags", "rtt"
and "loss" estimates). The list may be empty if the sender has not yet received any feedback from the group. If the sender has
received feedback, the list will minimally contain an entry identifying the CLR. A NORM_FLAG_CC_CLR flag value is provided
for the "cc_flags" field to identify the CLR entry. It is RECOMMENDED that the CLR entry be the first in the list for implemen-
tation efficiency. Additional entries in the list are used to provide sender-measured individual RTT estimates to receivers in the
group. The number of additional entries in this list is dependent upon the percentage of control traffic the sender application is
willing to send with respect to user data message transmissions. More entries in the list may allow the sender to be more respon-
sive to congestion control dynamics. The length of the list may be dynamically determined according to the current transmission
rate and scheduling of NORM_CMD(CC) messages. The maximum length of the list corresponds to the sender’s NormSegment-
Size parameter for the session. The inclusion of additional entries in the list based on receiver feedback are prioritized with fol-
lowing rules:

1) Receivers that have not yet been provided RTT feedback get first priority. Of these, those with the greatest
loss fraction receive precedence for list inclusion.

2) Secondly, receivers that have previously been provided RTT are included with receivers yielding the lowest
calculated congestion rate getting precedence.

There are "cc_flag" values in addition to NORM_FLAG_CC_CLR that are used for other congestion control functions. The
NORM_FLAG_CC_PLR flag value is used to mark additional receivers from that the sender would like to hav e immediate, non-
suppressed feedback. These may be receivers that the sender algorithmically identified as potential future CLRs or that have
been pre-configured as potential congestion control points in the network. The NORM_FLAG_CC_RTT indicates the validity of
the "cc_rtt" field for the associated receiver node. Normally, this flag will be set since the receivers in the list will typically be
receivers from which the sender has received feedback. However, in the case that the NORM sender has been pre-configured
with a set of PLR nodes, feedback from those receivers may not yet have been collected and thus the "cc_rtt" and "cc_rate" fields
do not contain valid values when this flag is not set.

5.5.2.2 NORM_CMD(CC) Feedback Response

Receivers explicitly respond to NORM_CMD(CC) messages in the form of a NORM_ACK(RTT) message. The goal of the conges-
tion control feedback is to determine the receivers with the lowest congestion control rates. Receivers that are marked as CLR or
PLR nodes in the NORM_CMD(CC) "cc_node_list" immediately provide feedback in the form of a NORM_ACK to this message.
When a NORM_CMD(CC) is received, non-CLR or non-PLR nodes initiate random feedback backoff timeouts similar to that
used when the receiver initiates a repair cycle (see Section 5.3) in response to detection of data loss. The backoff timeout for the

Adamson, Bormann, et al. Expires May 2004 [Page 41]

Internet Draft NORM Protocol November 2003

congestion control response is generated as follows:

T_backoff = RandomBackoff(K*GRTTsender, GSIZEsender)

The "RandomBackoff()" algorithm provides a truncated exponentially distributed random number and is described in the
NORM Building Block document [11]. The same backoff factor K = Ksender MAY be used as with NORM_NACK suppres-
sion. However, in cases where the application purposefully specifies a very small Ksender backoff factor to minimize the
NACK repair process latency (trading off group size scalability), it may still be desirable to maintain a larger backoff factor for
congestion control feedback, since there may often be a larger volume of congestion control feedback than NACKs in many
cases and congestion control feedback latency may be tolerable where reliable delivery latency is not. As previously noted, a
backoff factor value of K = 4 is generally recommended for ASM operation and K = 6 for SSM operation. A receiver
SHALL cancel the backoff timeout and thus its pending transmission of a NORM_ACK(RTT) message under the following condi-
tions:

1) The receiver generates another feedback message (NORM_NACK or other NORM_ACK) before the conges-
tion control feedback timeout expires,

2) A NORM_CMD(CC) or other receiver feedback with an ordinally greater "cc_sequence" field value is
received before the congestion control feedback timeout expires (This is similar to the TFMCC feedback
round number),

3) When the T_backoff is greater than 1*GRTT. This prevents NACK implosion in the event of sender or
network failure,

4) "Suppressing" congestion control feedback is heard from another receiver (in a NORM_ACK or
NORM_NACK) or via a NORM_CMD(REPAIR_ADV) message from the sender. The local receiver’s feed-
back is "suppressed" if the rate of the competing feedback (Rfb) is sufficiently close to or less than the local
receiver’s calculated rate (Rcalc). The local receiver’s feedback is canceled when:

Rcalc > (0.9 * Rfb)

Also note receivers that have not yet received an RTT measurement from the sender are suppressed only by
other receivers that have not yet measured RTT. Additionally, receivers whose RTT estimate has "aged"
considerably (i.e. they hav en’t been included in the NORM_CMD(CC) "cc_node_list" in a long time) may
wish to compete as a receiver with no prior RTT measurement after some expiration period.

When the backoff timer expires, the receiver SHALL generate a NORM_ACK(RTT) message to provide feedback to the sender
and group. This message may be multicast to the group for most effective suppression in ASM topologies or unicast to the
sender depending upon how the NORM protocol is deployed and configured.

Whenever any feedback is generated (including this NORM_ACK(RTT) message), receivers include an adjusted version of the
sender timestamp from the most recently received NORM_CMD(CC) message and the "cc_sequence" value from that command
in the applicable NORM_ACK or NORM_NACK message fields. For NORM-CC operation, any generated feedback message
SHALL also contain the NORM-CC Feedback header extension. The receiver provides its current "cc_rate" estimate, "cc_loss"
estimate, "cc_rtt" if known, and any applicable "cc_flags" via this header extension.

During slow start (when the receiver has not yet detected loss from the sender), the receiver uses a value equal to two times its
measured rate from the sender in the "cc_rate" field. For steady-state congestion control operation, the receiver "cc_rate" value is
from the equation-based value using its current loss event estimate and sender<->receiver RTT information. (The GRTT is used
when the receiver has not yet measured its individual RTT).

The "cc_loss" field value reflects the receiver’s current loss event estimate with respect to the sender in question.

Adamson, Bormann, et al. Expires May 2004 [Page 42]

Internet Draft NORM Protocol November 2003

When the receiver has a valid individual RTT measurement, it SHALL include this value in the "cc_rtt" field. The
NORM_FLAG_CC_RTT MUST be set when the "cc_rtt" field is valid.

After a congestion control feedback message is generated or when the feedback is suppressed, a non-CLR receiver begins a
"holdoff" timeout period during which it will restrain itself from providing congestion control feedback, even if
NORM_CMD(CC) messages are received from the sender (unless the receive becomes marked as a CLR or PLR node). The value
of this holdoff timeout (T_ccHoldoff) period is:

T_ccHoldoff = (K*GRTT)

Thus, non-CLR receivers are constrained to providing explicit congestion control feedback once per K*GRTT intervals. Note,
however, that as the session progresses, different receivers will be responding to different NORM_CMD(CC) messages and there
will be relatively continuous feedback of congestion control information while the sender is active.

5.5.2.3 Congestion Control Rate Adjustment

During steady-state operation, the sender will directly adjust its transmission rate to the rate indicated by the feedback from its
currently selected CLR according to any limitations described in [17]. As noted there, the estimation of parameters (loss and
RTT) for the CLR will generally constrain the rate changes possible within acceptable bounds. For rate increases, the sender
SHALL observe a maximum rate of increase of one packet per RTT at all times during steady-state operation.

The sender processes congestion control feedback from the receivers and selects the CLR based on the lowest rate receiver.
Receiver rates are either determined directly from the slow start "cc_rate" provided by the receiver in the NORM-CC Feedback
header extension or by performing the equation-based calculation using individual RTT and loss estimates ("cc_loss") as feed-
back is received.

The sender can calculate a current RTT for a receiver (RTT_rcvrNew) using the "grtt_response" timestamp included in feed-
back messages. When the "cc_rtt" value in a response is not valid, the sender simply uses this RTT_rcvrNew value as the
receiver’s current RTT (RTT_rcvr). For non-CLR and non-PLR receivers, the sender can use the "cc_rtt" value provided in the
NORM-CC Feedback header extension as the receiver’s previous RTT measurement (RTT_rcvrPrev) to smooth according to:

RTT_rcvr = 0.5 * RTT_rcvrPrev + 0.5 * RTT_rcvrNew

For CLR receivers where feedback is received more regularly, the sender SHOULD maintain a more smoothed RTT estimate
upon new feedback from the CLR where:

RTT_clr = 0.9 * RTT_clr + 0.1 * RTT_clrNew

"RTT_clrNew" is the new RTT calculated from the timestamp in the feedback message received from the CLR. The RTT_clr
is initialized to RTT_clrNew on the first feedback message received. Note that the same procedure is observed by the sender
for PLR receivers and that if a PLR is "promoted" to CLR status, the smoothed estimate can be continued.

There are some additional periods besides steady-state operation that need to be considered in NORM-CC operation. These peri-
ods are:

1) during session startup,
2) when no feedback is received from the CLR, and
3) when the sender has a break in data transmission.

During session startup, the congestion control operation SHALL observe a "slow start" procedure to quickly approach its fair
bandwidth share. An initial sender startup rate is assumed where:

Rinitial = MIN(NormSegmentSize / GRTT, NormSegmentSize) bytes/second.

Adamson, Bormann, et al. Expires May 2004 [Page 43]

Internet Draft NORM Protocol November 2003

The rate is increased only when feedback is received from the receiver set. The "slow start" phase proceeds until any receiver
provides feedback indicating that loss has occurred. Rate increase during slow start is applied as:

Rnew = Rrecv_min

where "Rrecv_min" is the minimum reported receiver rate in the "cc_rate" field of congestion control feedback messages
received from the group. Note that during "slow start", receivers use two times their measured rate from the sender in the
"cc_rate" field of their feedback. Rate increase adjustment is limited to once per GRTT during slow start.

If the CLR or any receiver intends to leave the group, it will set the NORM_FLAG_CC_LEAVE in its congestion control feed-
back message as an indication that the sender should not select it as the CLR. When the CLR changes to a lower rate receiver,
the sender should immediately adjust to the new lower rate. The sender is limited to increasing its rate at one additional packet
per RTT towards any new, higher CLR rate.

The sender should also track the "age" of the feedback it has received from the CLR by comparing its current "cc_sequence"
value (Seq_sender) to the last "cc_sequence" value received from the CLR (Seq_clr). As the "age" of the CLR feedback
increases with no new feedback, the sender SHALL begin reducing its rate once per RTT_clr as a congestion avoidance mea-
sure. The following algorithm is used to determine the decrease in sender rate (Rsender bytes/sec) as the CLR feedback, unex-
pectedly, excessively ages:

Age = Seq_sender - Seq_clr;
if (Age > 4) Rsender = Rsender * 0.5;

This rate reduction is limited to the lower bound on NORM transmission rate. After NORM_ROBUST_FACTOR consecutive
NORM_CMD(CC) rounds without any feedback from the CLR, the sender SHOULD assume the CLR has left the group and pick
the receiver with the next lowest rate as the new CLR. Note this assumes that the sender does not have explicit knowledge that
the CLR intentionally left the group. If no receiver feedback is received, the sender MAY wish to withold further transmissions
of NORM_DATA segements and maintain NORM_CMD(CC) transmissions only until feedback is detected. After such a CLR
timeout, the sender will be transmitting with a minimal rate and should return to slow start as described here for a break in data
transmission.

When the sender has a break in its data transmission, it can continue to probe the group with NORM_CMD(CC) messages to
maintain RTT collection from the group. This will enable the sender to quickly determine an appropriate CLR upon data trans-
mission restart. However, the sender should exponentially reduce its target rate to be used for transmission restart as time since
the break elapses. The target rate SHOULD be recalculated once per RTT_clr as:

Rsender = Rsender * 0.5;

If the minimum NORM rate is reached, the sender should set the NORM_FLAG_START flag in its NORM_CMD(CC) messages
upon restart and the group should observer "slow start" congestion control procedures until any receiver experiences a new loss
ev ent.

5.5.3 NORM Positive Acknowledgment Procedure

NORM provides options for the source application to request positive acknowledgment (ACK) of NORM_CMD(FLUSH) and
NORM_CMD(ACK_REQ) messages from members of the group. There are some specific acknowledgement requests defined for
the NORM protocol and a range of acknowledgment request types that are left to be defined by the application. One predefined
acknowledgement type is the NORM_ACK_FLUSH type. This acknowledgement is used to determine if receivers have achieved
completion of reliable reception up through a specific logical transmission point with respect to the sender’s sequence of trans-
mission. The NORM_ACK_FLUSH acknowledgement may be used to assist in application flow control when the sender has
information on a portion of the receiver set. Another predefined acknowledgement type is NORM_ACK(CC), which is used to
explicitly provide congestion control feedback in response to NORM_CMD(CC) messages transmitted by the sender for NORM-
CC operation. Note the NORM_ACK(CC) response does NOT follow the positive acknowledgement procedure described here.

Adamson, Bormann, et al. Expires May 2004 [Page 44]

Internet Draft NORM Protocol November 2003

The NORM_CMD(ACK_REQ) and NORM_ACK messages contain an "ack_type" field to identify the type of acknowledgement
requested and provided. A range of "ack_type" values is provided for application-defined use. While the application is responsi-
ble for initiating the acknowledgement request and interprets application-defined "ack_type" values, the acknowledgment proce-
dure SHOULD be conducted within the protocol implementation to take advantage of timing and transmission scheduling infor-
mation available to the NORM transport.

The NORM positive acknowledgement procedure uses polling by the sender to query the receiver group for response. Note this
polling procedure is not intended to scale to very large receiver groups, but could be used in large group setting to query a critical
subset of the group. Either the NORM_CMD(ACK_REQ), or when applicable, the NORM_CMD(FLUSH) message is used for
polling and contains a list of NormNodeIds for receivers that should respond to the command. The list of receivers providing
acknowledgement is determined by the source application with "a priori" knowledge of participating nodes or via some other
application-level mechanism.

The ACK process is initiated by the sender that generates NORM_CMD(FLUSH) or NORM_CMD(ACK_REQ) messages in peri-
odic "rounds". For NORM_ACK_FLUSH requests, the NORM_CMD(FLUSH) contain a "object_transport_id" and "fec_pay-
load_id" denoting the watermark transmission point for which acknowledgement is requested. This watermark transmission
point is "echoed" in the corresponding fields of the NORM_ACK(FLUSH) message sent by the receiver in response.
NORM_CMD(ACK_REQ) messages contain an "ack_id" field which is similarly "echoed" in response so that the sender may
match the response to the appropriate request.

In response to the NORM_CMD(ACK_REQ), the listed receivers randomly spread NORM_ACK messages uniformly in time over a
window of (1*GRTT). These NORM_ACK messages are typically unicast to the sender. (Note that NORM_ACK(CC) messages
SHALL be multicast or unicast in the same manner as NORM_NACK messages).

The ACK process is self-limiting and avoids ACK implosion in that:

1) Only a single NORM_CMD(ACK_REQ) message is generated once per (2*GRTT), and,

2) The size of the "acking_node_list" of NormNodeIds from which acknowledgment is requested is limited to
a maximum of the sender NormSegmentSize setting per round of the positive acknowledgement process.

Because the size of the included list is limited to the sender’s NormSegmentSize setting, multiple NORM_CMD(ACK_REQ)
rounds may be required to achieve responses from all receivers specified. The content of the attached NormNodeId list will be
dynamically updated as this process progresses and NORM_ACK responses are received from the specified receiver set. As the
sender receives valid responses (i.e. matching watermark point or "ack_id") from receivers, it SHALL eliminate those receivers
from the subsequent NORM_CMD(ACK_REQ) message "acking_node_list" and add in any pending receiver NormNodeIds while
keeping within the NormSegmentSize limitation of the list size. Each receiver is queried a maximum number of times
(NORM_ROBUST_FACTOR, by default). Receivers not responding within this number of repeated requests are removed from the
payload list to make room for other potential receivers pending acknowledgement. The transmission of the
NORM_CMD(ACK_REQ) is repeated until no further responses are required or until the repeat threshold is exceeded for all pend-
ing receivers. The transmission of NORM_CMD(ACK_REQ) or NORM_CMD(FLUSH) messages to conduct the positive acknowl-
edgment process is multiplexed with ongoing sender data transmissions. However, the NORM_CMD(FLUSH) positive acknowl-
edgment process may be interrupted in response to negative acknowledgement repair requests (NACKs) received from receivers
during the acknowledgment period. The NORM_CMD(FLUSH) positive acknowledgment process is restarted for receivers pend-
ing acknowledgement once any the repairs have been transmitted.

In the case of NORM_CMD(FLUSH) commands with an attached "acking_node_list", receivers will not ACK until they hav e
received complete transmission of all data up to and including the given watermark transmission point. All receivers SHALL
interpret the watermark point provided in the request NACK for repairs if needed as for NORM_CMD(FLUSH) commands with
no attached "acking_node_list".

Adamson, Bormann, et al. Expires May 2004 [Page 45]

Internet Draft NORM Protocol November 2003

5.5.4 Group Size Estimation

NORM sender messages contain a "gsize" field that is a representation of the group size and is used in scaling random backoff
timer ranges. The use of the group size estimate within the NORM protocol does not require a precise estimation and works rea-
sonably well if the estimate is within an order of magnitude of the actual group size. By default, the NORM sender group size
estimate may be administratively configured. Also, given the expected scalability of the NORM protocol for general use, a
default value of 10,000 is recommended for use as the group size estimate.

It is possible that group size may be algorithmically approximated from the volume of congestion control feedback messages
which follow the exponentially weighted random backoff. However, the specification of such an algorithm is currently beyond
the scope of this document.

6.0 Security Considerations

The same security considerations that apply to the NORM, FEC, and TFMCC building blocks also apply to the NORM protocol.
In addition to vulnerabilities that any IP and IP multicast protocol implementation may be generally subject to, the NACK-based
feedback of NORM may be exploited by replay attacks which force the NORM sender to unnecessarily transmit repair informa-
tion. This MAY be addressed by network layer IP security implementations that guard against this potential security exploita-
tion. It is RECOMMENDED that such IP security mechanisms be used when available. Another possible approach is for
NORM senders to use the "sequence" field from the NORM Common Message Header to detect replay attacks. This can be
accomplished if the sender is willing to maintain state on receivers which are NACKing. A cache of receiver state may provide
some protection against replay attacks. Note that the "sequence" field of NORM messages should be incremented with indepen-
dent values for different destinations (e.g., group-addressed versus unicast-addressed messages versus "receiver" messages).
Thus, the congestion control loss estimation function of the "sequence" field can be preserved for sender messages when receiver
messages are unicast to the sender.

While NORM does leverage FEC-based repair for scalability, this does not alone guarantee integrity of received data. Applica-
tion-level integrity-checking of data content is highly RECOMMENDED.

The NORM protocol is compatible with the use of the IP security (IPSEC) architecture described in [22]. Additionally the IETF
Multicast Security (msec) Working Group is actively developing solutions which may be applicable to NORM in the future.

7.0 Suggested Use

The present NORM protocol is seen as useful tool for the reliable data transfer over generic IP multicast services. It is not the
intention of the authors to suggest it is suitable for supporting all envisioned multicast reliability requirements. NORM provides
a simple and flexible framework for multicast applications with a degree of concern for network traffic implosion and protocol
overhead efficiency. NORM-like protocols have been successfully demonstrated within the MBone for bulk data dissemination
applications, including weather satellite compressed imagery updates servicing a large group of receivers and a generic web con-
tent reliable "push" application.

In addition, this framework approach has some design features making it attractive for bulk transfer in asymmetric and wireless
internetwork applications. NORM is capable of successfully operating independent of network structure and in environments
with high packet loss, delay, and misordering. Hybrid proactive/reactive FEC-based repairing improve protocol performance in
some multicast scenarios. A sender-only repair approach often makes additional engineering sense in asymmetric networks.
NORM’s unicast feedback capability may be suitable for use in asymmetric networks or in networks where only unidirectional
multicast routing/delivery service exists. Asymmetric architectures supporting multicast delivery are likely to make up an impor-
tant portion of the future Internet structure (e.g., DBS/cable/PSTN hybrids) and efficient, reliable bulk data transfer will be an
important capability for servicing large groups of subscribed receivers.

Adamson, Bormann, et al. Expires May 2004 [Page 46]

Internet Draft NORM Protocol November 2003

8.0 Acknowledgements (and these are not Negative)

The authors would like to thank Rick Jones, Vincent Roca, Rod Walsh, Toni Paila, Michael Luby, and Joerg Widmer for their
valuable input and comments on this document. The authors would also like to thank the RMT working group chairs, Roger
Kermode and Lorenzo Vicisano, for their support in development of this specification, and Sally Floyd for her early input into
this document.

9.0 References

[1] R. Kermode, L. Vicisano, "Author Guidelines for Reliable Multicast Transport (RMT) Building Blocks and
Protocol Instantiation documents", RFC 3269, April 2002.

[2] S. Bradner, "Ke y words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[3] A. Mankin, A. Romanow, S. Bradner, and V. Paxson, "IETF Criteria for Evaluating Reliable Multicast
Transport and Application Protocols", RFC 2357, June 1998.

[4] Whetten, B., Vicisano, L., Kermode, R., Handley, M., Floyd S. and Luby, M., "Reliable Multicast Transport
Building Blocks for One-to-Many Bulk-Data Transfer", RFC 3048, January 2001.

[5] M. Handley, and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998.

[6] M. Handley, C. Perkins, and E. Whelan, "Session Announcement Protocol", RFC 2974, October 2000.

[7] S. Pingali, D. Towsley, J. Kurose, "A Comparison of Sender-Initiated and Receiver-Initiated Reliable Multi-
cast Protocols", In Proc. INFOCOM, San Francisco CA, October 1993.

[8] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft, "The Use of Forward Error
Correction (FEC) in Reliable Multicast", RFC 3453, December 2002.

[9] J. Macker, B. Adamson, "The Multicast Dissemination Protocol (MDP) Toolkit", Proc. IEEE MILCOM 99,
October 1999.

[10] J. Nonnenmacher and E. Biersack, "Optimal Multicast Feedback", Proc. IEEE INFOCOMM, p. 964,
March/April 1998.

[11] J. Macker, B. Adamson, "Quantitative Prediction of Nack Oriented Reliable Multicast (NORM) Feedback",
Proc. IEEE MILCOM 2002, October 2002.

[12] S. Deering, "Host Extensions for IP Multicasting", STD 5, RFC 1112, August 1989.

[13] H.W. Holbrook, "A Channel Model for Multicast", Ph.D. Dissertation, Stanford University, Department of
Computer Science, Stanford, California, August 2001.

[14] B. Adamson, C. Bormann, M. Handley, and J. Macker, "NACK-Oriented Reliable Multicast (NORM) Pro-
tocol Building Blocks", Internet Draft draft-ietf-rmt-bb-norm-05.txt, March 2003, work in progress. Cita-
tion for informational purposes only.

[15] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft, "The Use of Forward Error
Correction (FEC) in Reliable Multicast", RFC 3453, December 2002.

Adamson, Bormann, et al. Expires May 2004 [Page 47]

Internet Draft NORM Protocol November 2003

[16] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft, "Forward Error Correction
(FEC) Building BLock", RFC 3452, December 2002.

[17] J. Widmer, M. Handley, "TCP-Friendly Multicast Congestion Control (TFMCC) Protocol Specification",
Internet Draft draft-ietf-rmt-bb-tfmcc-01.txt, November 2002, work in progress. Citation for informational
purposes only.

[18] D. Gossink, J. Macker, "Reliable Multicast and Integrated Parity Retransmission with Channel Estimation",
IEEE GLOBECOMM 98’, September 1998.

[19] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, "RTP: A Transport Protocol for Real-Time Applica-
tions", RFC 1889, January 1996.

[20] J. Widmer and M. Handley, "Extending Equation-Based Congestion Control to Multicast Applications",
Proc ACM SIGCOMM 2001, San Diego, August 2001.

[21] L. Rizzo, "pgmcc: A TCP-Friendly Single-Rate Multicast Congestion Control Scheme", Proc ACM SIG-
COMM 2000, Stockholm, August 2000.

[22] S. Kent and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.

[23] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modelling TCP Throughput: A Simple Model and its
Empirical Validation", Proc ACM SIGCOMM 1998.

10.0 Authors’ Addresses

Brian Adamson
adamson@itd.nrl.navy.mil
Naval Research Laboratory
Washington, DC, USA, 20375

Carsten Bormann
cabo@tellique.de
Tellique Kommunikationstechnik GmbH
Gustav-Meyer-Allee 25 Geb ude 12
D-13355 Berlin, Germany

Mark Handley
mjh@aciri.org
1947 Center Street, Suite 600
Berkeley, CA 94704

Joe Macker
macker@itd.nrl.navy.mil
Naval Research Laboratory
Washington, DC, USA, 20375

Adamson, Bormann, et al. Expires May 2004 [Page 48]

